ГОСТ 12.1.050-86.

Система стандартов безопасности труда Методы измерения шума на рабочих местах

Межгосударственный стандарт ГОСТ 12.1.050-86 «Система стандартов безопасности труда. Методы измерения шума на рабочих местах» (введен в действие постановлением Госстандарта СССР от 28 марта 1986г. №790). Occupational safety standards system. Methods of noise measurement at work-places

Дата введения 1 января 1987г. Взамен ГОСТ 20445-75

Настоящий стандарт устанавливает методы измерения шума в производственных помещениях и на территориях предприятий на рабочих местах во всех отраслях народного хозяйства.

1. Общие положения

- 1.1. Измерения шума должны производиться для контроля соответствия фактических уровней шума на рабочих местах допустимым по действующим нормам.
- 1.2. Устанавливаются следующие измеряемые и рассчитываемые величины в зависимости от временных характеристик шума*:

уровень звука, дБА, и октавные уровни звукового давления, дБ - постоянного шума;

эквивалентный уровень звука и максимальный уровень звука, дБА - для колеблющегося во времени шума;

эквивалентный уровень звука, дБА, и максимальный уровень звука, дБАІ, - для импульсного шума;

эквивалентный и максимальный уровни, дБА, - для прерывистого шума.

1.3. Результаты измерений должны характеризовать шумовое воздействие за время рабочей смены (рабочего дня).

Устанавливается следующая продолжительность измерения непостоянного шума:

половина рабочей смены (рабочего дня) или полный технологический цикл. Допускается общая продолжительность измерения 30мин, состоящая из трех циклов каждый продолжительностью 10мин – для колеблющегося во времени;

30мин – для импульсного;

полный цикл характерного действия шума – для прерывистого.

1.4. Измерения шума для контроля соответствия фактических уровней шума на рабочих местах допустимым уровням по действующим нормам должны производиться при работе *не менее 2/3* установленных в данном помещении единиц технологического оборудования в наиболее часто реализуемом (характерном) режиме его работы.

Во время проведения измерений *должно быть включено оборудование вентиляции*, *кондиционирования воздуха и другие*, обычно используемые в помещении устройства, являющиеся источником шума.

1.5. При проведении измерений шума должно быть учтено воздействие вибрации, магнитных и электрических полей, радиоактивного излучения и других неблагоприятных факторов, влияющих на результаты измерений.

2. Аппаратура

- 2.1. Уровни звука измеряют шумомерами 1 или 2-го класса точности по ГОСТ 17187-81.
- 2.2. Октавные уровни звукового давления измеряют шумомерами по ГОСТ 17187-81 с подключенными к ним октавными электрическими фильтрами по ГОСТ 17168-82 или комбинированными измерительными системами соответствующего класса точности.
- 2.3. Измерение эквивалентных уровней звука следует производить интегрирующими шумомерами и шумоинтеграторами, перечень которых приведен в приложении 1.

Допускается использовать индивидуальные дозиметры шумов с параметром эквивалентности q=3 — число децибел, прибавляемых к уровню шума при уменьшении времени его действия в 2 раза для сохранения той же дозы шума.

2.4. Аппаратуру калибруют до и после проведения измерения шума в соответствии с инструкциями по эксплуатации приборов.

3. Проведение измерения

- 3.1. Микрофон следует располагать на высоте 1,5м над уровнем пола или рабочей площадки (если работа выполняется стоя) или на высоте уха человека, подвергающегося воздействию шума (если работа выполняется сидя). Микрофон должен быть ориентирован в направлении максимального уровня шума и удален не менее чем на 0,5м от оператора, проводящего измерения.
- 3.2. Для оценки шума на постоянных рабочих местах измерения следует проводить в точках, соответствующих установленным постоянным местам.
- 3.3. Для оценки шума на непостоянных рабочих местах измерения следует проводить в рабочей зоне в точке наиболее частого пребывания работающего.
- 3.4. При проведении измерений октавных уровней звукового давления переключатель частотной характеристики прибора устанавливают в положение «фильтр». Октавные уровни звукового давления измеряют в полосах со среднегеометрическими частотами 63-8000Гц.

При проведении измерений уровней звука и эквивалентных уровней звука, дБА, переключатель частотной характеристики прибора устанавливают в положение «А».

- 3.5. При проведении измерений уровней звука и октавных уровней звукового давления постоянного шума переключатель временной характеристики прибора устанавливают в положение «медленно». Значения уровней принимают по средним показателям при колебании стрелки прибора.
- 3.6. Значения уровней звука и октавных уровней звукового давления считывают со шкалы прибора с точностью до 1дБА, дБ.
- 3.7. Измерения уровней звука и октавных уровней звукового давления постоянного шума должны быть проведены в каждой точке не менее трех раз.
- 3.8. При проведении измерений эквивалентных уровней звука колеблющегося во времени шума для определения эквивалентного (по энергии) уровня звука переключатель временной характеристики прибора устанавливают в положение «медленно». Значения уровней звука принимают по показаниям стрелки прибора в момент отсчета.
- 3.9. При проведении измерений максимальных уровней звука колеблющегося во времени шума переключатель временной характеристики прибора устанавливают в положение «медленно». Значения уровней звука снимают в момент максимального показания прибора.
- 3.10. При проведении измерений максимальных уровней звука импульсного шума переключатель временной характеристики прибора устанавливают в положение «импульс». Значения уровней принимают по максимальному показанию прибора.
- 3.11. Интервалы отсчета уровней звука колеблющегося во времени шума при измерениях эквивалентного уровня продолжительностью 30мин составляют 5-6с при общем числе отсчетов 360.

3.12. При проведении измерений эквивалентных уровней звука непостоянного шума переключатель временной характеристики прибора устанавливают в положение «медленно», измеряют уровни звука и продолжительность каждой ступени.

4. Обработка результатов

- 4.1. Результаты измерения представляют в форме протокола в соответствии с приложением 2.
- 4.2. Средний уровень звука и средние октавные уровни звукового давления постоянного шума в каждой точке определяют в соответствии с приложением 3.
- 4.3. За максимальный уровень звука при проведении измерений шумомерами принимают наибольшее значение уровня звука за период измерения.
- 4.4. Эквивалентные уровни звука прерывистого шума в каждой точке при измерениях шумомером определяют в соответствии с приложением 4.
- 4.5. Эквивалентные уровни звука колеблющегося во времени шума при измерениях шумомером в течение 30мин в каждой точке определяют в соответствии с рекомендуемым приложением 5.

Приложение 1 Справочное

Основные характеристики приборов для измерения непостоянных шумов

Характеристика			Интегри	рующие шуг	момеры		
	ВШВ-003	2221, 2222	2230	00026	00023	CEL393	7178
Частотная	А, С, Лин	А, Лин	А, С, Лин	А, С, Лин	А, С, Лин	А, Лин	А, Лин
коррекция							
Постоянная	Быстро,	Быстро,	Быстро,	Быстро,	Быстро,	Быстро,	Быстро,
времени	медленно	медленно,	медленно,	медленно,	медленно,	медленно,	медленно,
		пик,	пик,	пик,	импульс	пик,	импульс
		хранение	импульс,	импульс,		импульс	
		максимума	хранение	хранение			
			максимума	максимума			
Размеры, мм	100x280	205x72x24	370x85x47	318x114	340x119	_	50x85x245
	x240			x190	x194		
Масса, кг	4,0	0,4	0,86	4,0	4,7	Менее 1,0	1,2
	ПО						
Изготовитель	Вибро-	Брюль и	Брюль и	Роботрон,	Роботрон	CEL	Вяртсиля
изготовитель	прибор,	Къер, Дания	Къер, Дания	ГДР	ГДР	Англия	Финляндия
	CCCP						

Продолжение

Характеристика	Шумоинтегратор	Ы	Дозиметры шумов					
	ШИН-01	ELD 01	4428	CE 179	6074 A	00080		
Частотная	По выбранному	По	A	A	A	A		
коррекция	шумомеру	выбранному						
		шумомеру						
Постоянная	Медленно	Быстро,	Непрерывна	ая обработка	ı			
времени		импульс						
Размеры, мм	390×150×265	210×90×150	122×75×29	69×81×25	21×69×106	166×31×78		
Масса, кг	6,0	2,6	0,25	0,23	0,16	0,42		

^{*}Термины и определения даны в ГОСТ 12.1.003-83.

Изготовитель	ОПО	«Роде и	«Брюль и	«CEL»,	«Вяртсиля»,	«Роботрон»,
	«Медлабор-	Шварц»,	Къер»,	Англия	Финляндия	ГДР
	техника», СССР	ФРГ	Дания			

ПРОТОКОЛ ПРОВЕДЕНИЯ ИЗМЕРЕНИЙ

- 1. Место проведения измерений
- 2. Средства измерений и аппаратура
- 3. Сведения о государственной поверке

(дата и номер свидетельства (справки)

- 4. Нормативно-техническая документация, в соответствии с которой проводились измерения
- 5. Основные источники шума, характер шума, создаваемого ими в помещении
- 6. Время, в течение которого проводилось измерение
- 7. Эскиз помещения (территории) с нанесением источников шума и указанием стрелками мест установки и ориентации микрофонов. Порядковые номера точек измерений
- 8. Организация, проводившая измерения.
- 9. Ф. И. О. ответственного за проведение измерений или проводившего измерение
- 10. Результаты измерения и расчета по форме 1

Форма 1

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЯ ШУМА

No	Место	Характ	ер шума	ļ		Урс	Уровни звукового давления в дБ и							Я			
Π/Π	измерения					окт	авны	х пол	iocax	co				<	<u>ہ</u>	низ	
						cpe,	днеге	еомет	риче	скими	и часто	этами,	, Гц	í IID	(F.A	че	
		постоянный	колеблющийся	прерывистый	импульсный	63	125	250	500	1000	2000	4000	8000	Уровень звука (эквивален-тный уровень звука), д	Максимальный уровень звука, д дБАІ	Допустимые зна (ПС или дБА по норме)	Превышение
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18

ОПРЕДЕЛЕНИЕ СРЕДНЕГО УРОВНЯ ЗВУКА (ОКТАВНЫХ УРОВНЕЙ ЗВУКОВОГО ДАВЛЕНИЯ)

Средний уровень звукам LAcp, дБА, и средние октавные уровни звукового давления Lcp, дБ, вычисляют по формулам:

$$L_{A_{\text{tp}}} = 10 \lg \sum_{i=1}^{n} 10^{0,1} L_{A_i} - 10 \lg n$$

$$L_{\rm cp} = 10 \lg \sum_{i=1}^{n} 10^{0,1} L_{A_i} - 10 \lg n$$

где L_{Ai} , L_i – измеренные уровни звука, дБА. или октавные уровни звукового давления в точке, дБ; i = 1, 2, ...n, где n - количество измерений в точке;

$$10\lg\sum_{i=1}^n 10^{0,1}L_{A_i}$$
 - суммарный уровень звука (октавный уровень звукового давления) вычисляется по таблице.

дБА, дБ

Разность двух складываемых	0	1	2	3	4	5	6	7	8	9	10	15	20
уровней													
Добавка к более высокому	3,0	2,5	2,0	1,8	1,5	1,2	1,0	0,8	0,6	0,5	0,4	0,2	0
уровню													

Сложение уровней по таблице проводят в следующем порядке:

- 1) вычисляют разность складываемых уравнений;
- 2) определяют добавку к более высокому уровню в соответствии с таблицей;
- 3) прибавляют добавку к более высокому уровню;
- 4) аналогичные действия производят с полученной суммой и третьим уровнем и т.д.

Полученная сумма и есть
$$10\lg\sum_{i=1}^{n}10^{0,1}L_{A_{i}}$$

Если разность между наибольшим и наименьшим измеренными уровнями не превышает 5 дБ, то среднее значение L_{Acp}, L_{cp} равно среднему арифметическому значению всех измеренных уровней.

РАСЧЕТ ЭКВИВАЛЕНТНОГО УРОВНЯ ЗВУКА ПРЕРЫВИСТОГО ШУМА ПРИ ИЗМЕРЕНИЯХ ШУМОМЕРОМ (ШУМ В СТУПЕНИ - ПОСТОЯННЫЙ)

Расчет эквивалентного уровня звука, дБА (уровня звукового давления, дБ) проводится в следующей последовательности.

1. Определяют поправки ΔL_{Ai} , дБА, ΔL_i , дБ, к значениям измеренных уровней звука L_{Ai} или октавных уровней звукового давления L_i в зависимости от продолжительности ступеней шума в соответствии с таблицей.

Продолжительность	480	420	360	300	240	180	120	60	30	15	6
ступени прерывистого											
шума, мин											
Поправка	0	0,6	1,2	2,0	3,0	4,2	6,0	9,0	12,0	15,1	19,0
ΔL _{Ai} , дБА;											
ΔLі, дБ											

- 2. Вычисляют разности L_{Ai}–∆L_{Ai}, L_i–∆L_i для каждой ступени шума.
- 3. Полученные разности энергетически суммируются в соответствии с таблицей обязательного приложения 3. Определенный суммарный уровень и будет являться эквивалентным уровнем звука или уровнем звукового давления.

ПРИЛОЖЕНИЕ 5 Рекомендуемое

РАСЧЕТ ЭКВИВАЛЕНТНОГО УРОВНЯ ЗВУКА КОЛЕБЛЮЩЕГОСЯ ВО ВРЕМЕНИ ШУМА (продолжительность измерения 30 мин)

Расчет производится в следующей последовательности.

- 1. Диапазон подлежащих измерению уровней звука разбивают на следующие интервалы: от 38 до 42; от 43 до 47; от 48 до 52; от 53 до 57; от 58 до 62; от 68 до 67; от 68 до 72; от 73 до 77; от 78 до 82; от 83 до 87; от 88 до 92; от 93 до 97; от 98 до 102; от 103 до 107; от 108 до 112; от 113 до 117; от 118 до 122 дБА.
- 2. Измеряемые уровни звука распределяют по интервалам, подсчитывают число отсчетов уровней звука в каждом интервале.

Результаты отсчетов заносятся в графы 2 и 3 табл.1.

- 3. По табл.2 определяют частные индексы в зависимости от интервала и числа отсчетов в данном интервале уровней звука. Полученные значения записывают в графу 4 табл.1.
- 4. Записанные в графе 4 частные индексы суммируют и результат записывают в графу 5 табл.1.
 - 5. Эквивалентный уровень звука Lаэкв, дБА, определяют по формуле

$$L_{A_{SKB}} = 30 + \Delta L_{A_{i}},$$

где ΔL_{Ai} – поправка, дБА, определяемая по табл.3 в зависимости от величины суммарного индекса.

Таблица1

Колеблющийся во времени шум (продолжительность измерения 30 мин)

Интервалы уровней	Отметки отсчетов	Число отсчетов	Частные	Суммарный
звука, дБА	уровней звука в	уровней звука в	индексы	индекс
	интервале	интервале		
1	2	3	4	5
От 38 до 42				
" 43 " 47				
" 48 " 52				
" 53 " 57				
" 58 " 62				
" 63 " 67				
" 68 " 72				
" 73 " 77				
" 78 " 82				
" 83 " 87				
" 88 " 92				
" 93 " 97				
" 98 " 102				
" 103 " 107				
" 108 " 112				
" 113 " 117				
" 118 " 122				

 $\Delta L_{Ai} =$ дБА $L_{A ext{\tiny ABKB}} =$ дБА

Таблица 2

									13	аолица 2
Число				Интерва	лы урові	ней звука	, дБА			
отсчетов	От 38 до	От 43	От 48	От 53	От 58	От 63	От 68	От 73	От 78	От 83
уровней	42	до 47	до 52	до 57	до 62	до 67	до 72	до 77	до 82	до 87
звука в				Ч	астные и	ндексы				
интервале										
1	2	3	4	5	6	7	8	9	10	11
1	0	0	0	1	3	9	28	88	278	878
2	0	0	1	2	6	18	56	176	556	1760
3	0	0	1	3	8	26	83	284	833	2640
4	0	0	1	4	11	35	111	350	1110	3500
5	0	0	1	4	14	44	138	439	1380	4390
6	0	1	2	5	17	52	166	527	1660	5270
7	0	1	2	6	19	61	194	615	1940	6150
8	0	1	2	7	22	70	222	703	2220	7030
9	0	1	3	8	25	79	250	790	2500	7900
10	0	1	3	9	28	88	278	880	2780	8800
11-12	0	1	3	10	33	105	330	1050	3300	10500
13-14	0	1	4	12	39	123	389	1230	3890	12300
15-16	0	1	4	14	44	141	444	1410	4440	14100
17-18	1	2	5	16	50	158	500	1580	5000	15800
19-20	1	2	6	18	56	176	560	1760	5600	17600
21-23	1	2	6	20	64	202	639	2020	6390	20200
24-26	1	2	7	23	72	228	722	2280	7220	22800
27-30	1	3	8	26	83	263	833	2630	8330	26300
31-34	1	3	9	30	94	299	944	2990	9440	29900

35-39	1	3	11	34	108	343	1080	3430	10800	34300
40-44	1	4	12	39	122	387	1220	3870	12200	38700
45-49	1	4	14	43	136	430	1360	4800	13600	48000
50-56	2	5	16	49	156	492	1560	4920	15600	49200
57-63	2	6	17	55	175	553	1750	5530	17500	55300
64-70	2	6	19	61	194	615	1940	6150	19400	61500
71-80	2	7	22	70	222	703	2220	7030	22200	70300
81-90	3	8	25	79	250	790	2500	7900	25000	79000
91-100	3	9	28	88	278	878	2780	8780	27800	87800
101-115	3	10	32	101	319	1010	3190	10100	31900	101000
116-130	4	11	36	114	361	1140	3610	11400	36100	114000
131-150	4	13	42	132	417	1320	4170	13200	41700	132000
151-170	5	15	47	149	472	1490	4720	14900	47200	149000
171-190	5	17	53	167	528	1670	5280	16700	52800	167000
191-220	6	19	61	193	611	1930	6110	19300	61100	193000
221-250	7	22	69	220	694	2200	6940	22000	69400	220000
251-280	8	25	78	246	778	2460	7780	24600	77800	246000
281-320	9	28	89	281	889	2810	8890	28100	88900	281000
321-360	10	32	100	316	1000	3160	10000	31600	100000	316000

Продолжение табл. 2

Число		Интервалы уровней звука, дБА											
отсчетов	От 88 до	От 93 до	От 98 до	От 103	От 108 до	От 113 до	От 118 до						
уровней звука	92	97	102	до 107	112	117	122						
в интервале				Частные	индексы								
1	2780	8780	27800	87800	278000	878000	2780000						
2	5560	17600	55600	176000	556000	1760000	5560000						
3	8330	26400	83300	264000	833000	2640000	8330000						
4	11100	35000	111000	350000	1110000	3500000	11100000						
5	13800	43900	138000	439000	1380000	4390000	13800000						
6	16600	52700	166000	527000	1660000	5270000	16600000						
7	19400	61500	194000	615000	1940000	6150000	19400000						
8	22200	70300	222000	703000	2220000	7030000	22200000						
9	25000	79000	250000	790000	2500000	7900000	25000000						
10	27800	88000	278000	880000	2780000	8800000	27800000						
11-12	33000	105000	330000	1050000	3300000	10500000	33000000						
13-14	38900	123000	389000	1230000	3890000	12300000	38900000						
15-16	44400	141000	444000	1410000	4440000	14100000	44400000						
17-18	50000	158000	500000	1580000	5000000	15800000	50000000						
19-20	56000	176000	560000	1760000	5600000	17600000	56000000						
21-23	63900	202000	639000	2020000	6390000	20200000	63900000						
24-26	72200	228000	722000	2280000	7220000	22800000	72200000						
27-30	83300	263000	833000	2630000	8330000	26300000	83300000						
31-34	94400	299000	944000	2990000	9440000	29900000	94400000						
35-39	108000	343000	1080000	3430000	10800000	34300000	108000000						
40-44	122000	387000	1220000	3870000	12200000	38700000	122000000						
45-49	136000	430000	1360000	4300000	13600000	43000000	136000000						
50-56	156000	492000	1560000	4920000	15600000	49200000	156000000						
57-63	175000	553000	1750000	5530000	17500000	55300000	175000000						
64-70	194000	615000	1940000	6150000	19400000	61500000	194000000						
71-80	222000	703000	2220000	7030000	22200000	70300000	222000000						

81-90	250000	790000	2500000	7900000	25000000	79000000	250000000
91-100	278000	878000	2780000	8780000	27800000	87800000	278000000
101-115	319000	1010000	3190000	10100000	31900000	101000000	319000000
116-130	361000	1140000	3610000	11400000	36100000	114000000	361000000
131-150	417000	1320000	4170000	13200000	41700000	132000000	417000000
151-170	472000	1490000	4720000	14900000	47200000	149000000	472000000
171-190	528000	1670000	5280000	16700000	52800000	167000000	528000000
191-220	611000	1930000	6110000	19300000	61100000	193000000	611000000
221-250	694000	2200000	6940000	22000000	69400000	220000000	694000000
251-280	778000	2460000	7780000	24600000	77800000	246000000	778000000
281-320	889000	2810000	8890000	28100000	88900000	281000000	889000000
321-360	1000000	3160000	10000000	31600000	100000000	316000000	1000000000

Таблица 3

							Гаолица 3
Суммарный	ДБА	Суммарный	ДБА	Суммарный	ДБА	Суммарный	ДБА
индекс		индекс		индекс		индекс	
6	8	794	29	100000	50	12590000	71
8	9	1000	30	125900	51	15850000	72
10	10	1259	31	158500	52	19950000	73
13	11	1585	32	199500	53	25120000	74
16	12	1995	33	251200	54	31620000	75
20	13	2512	34	316200	55	39810000	76
25	14	3162	35	398100	56	50120000	77
32	15	3981	36	501200	57	63100000	78
40	16	5012	37	631000	58	79430000	79
50	17	6310	38	794300	59	100000000	80
63	18	7943	39	1000000	60	125900000	81
79	19	10000	40	1259000	61	158500000	82
100	20	12590	41	1585000	62	199500000	83
126	21	15850	42	1995000	63	251200000	84
159	22	19950	43	2512000	64	310200000	85
200	23	25120	44	3162000	65	398100000	86
251	24	31620	45	3981000	66	501200000	87
316	25	39810	46	5012000	67	631000000	88
398	26	50120	47	6310000	68	794300000	89
501	27	63100	48	7943000	69	1000000000	90
631	28	79430	49	10000000	70		