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Introduction

Electromagnetics.and microwave technology are progressing these years with considerable
pace. One of the frontiers at which major conquests are being made is that of new
materials. The interaction of electric and magnetic fields with matter is determined by
the physical phenomena taking place within media, but in the electromagnetic description,
these effects are reduced to plain material parameters that express the magnitude of the
response between the exciting field and the corresponding polarization. It is only during
the latest years that microwave community has recognized the potential of novel, more
complicated material effects in the design of new components and systems.

Complex materials have, indeed, attracted the attention of several research groups working
in the electromagnetics, microwave, millimeter wave, and optical areas. The class of these
media — upon which sometimes the label “exotic” is attached — contains several types
of materials that loosely can be said to have one thing in common: the ability to exhibit
some special effect when excited by the electromagnetic wave. As examples be mentoined
chiral, nonreciprocal, nonlinear, gyrotropic, anisotropic, high-T, superconducting, etc.,
materials, all of which promise applications in microwave engineering.

Bi-isotropic media are a subgroup of these novel materials. These are isotropic, i.e. they
behave similarly regardless the direction of the vector force of the electric or magnetic field.
But they are bi-isotropic, meaning that there is electrically incited magnetic polarization
and vice versa. One might divide bi-isotropic materials in five groups:

e diclectric media, consisting microscopically of electrically polarizable entities, which
are induced by the electric field

e magnetic media, displaying analogously magnetic polarization due to an external
magnetic field

e reciprocal chiral media, that due to their inherent left- or right-handedness exhibit
magnetically caused electric dipole moment density and vice versa; these are also
called Pasteur media

¢ nonreciprocal media, where the magnetoelectric effect is cophasal unlike in chiral
media; also called as Tellegen media

¢ media characterized by any combination of these four effects
In the beginning of February, 1993, Helsinki University of Technology hosted a workshop

on novel microwave materials. Bi-isotropics’99 was the name of the four-day-and-night
workshop that attracted 17 participants from six countries: Finland, Russia, Belorussia,



France, United Kingdom, and Germany. The focus of the talks was intended to be
the theory and applications of bi-isotropic materials in electromagnetics and microwave
engineering, but it may be the nature of this rapidly progressing field a reason for the fact
that also results on more general, bianisotropic materials were discussed (not to mention
the informal interaction sessions where topics like scientific ethics and turmoils in global
political structures were reached). Perhaps even Bianisotropics’93 would be too narrow
a title for the next workshop to follow. — Some form of continuation to Bi-isotropics’93
will certainly materialize; the desire is evident.

This report is a compilation of written material from the presentations held during the
workshop. The pages of this “book of abstracts” are diverse: the contributions range
from full reports through short summaries to copies of the viewgraphs shown in the oral
presentation. Without apologizing for this type of formal shortcomings of my collection,
I hope that the information about research results — especially by workshop participants
from the former Soviet Union — will percolate on the pages of this report through the
electromagnetics and microwave communities of our world.

*x * %

Bringing together participants from various countries, and especially from economically
unequally-equipped societies, requires commitment in terms of money. I wish to acknowl-
edge the financial assistance from the following three agencies:

¢ IEEE (The Institute of Electrical and Electronics Engineers) MTT (Microwave Theory
and Techniques) Society within Region 8
e URSI (International Union of Radio Science) Finnish National Committee

e The Electromagnetics Laboratory of Helsinki University of Technology

St. Valentine’s Day, 1993
Ari Sihvola, Workshop Organizer
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.15 Ismo Lindell (Helsinki University of Technology, Finland)
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Wednesday, 3 February
9.00 Sergei Tretyakov (St. Petersburg State Technical University, Russia)
Chiral and bi-isotropic materials in waveguiding applications
9.45 Discussion
10.00 Ari Sihvola (Helsinki University of Technology, Finland)
Macroscopic predictions of materials parameters
for heterogeneous bi media
10.45 Discussion
11.15 Fyodor Fyodorov (Belorussian Academy of Sciences, Minsk)
Covariant methods in the theory of electromagnetic waves
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14.00 Visit to the Telecommunications Laboratory
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10.30 Anatoly Serdyukov (Gomel State University, Belorussia)
Microwave and optical chirality research at the Gomel State
University

11.30 Discussion

11.45 Igor Semchenko (Gomel State University, Belorussia)
Particular waves in bi-isotropic media

12.30 Discussion

13.00 Closing of the Workshop
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ELECTROMAGNETICS IN NOVEL ISOTROPIC MEDIA

I V Lindell

ABSTRACT

Basic relations of electromagnetic fields in bi-isotropic media are briefly discussed. Such
media are more general than the ordinary isotropic dielectric and magnetic media because
they can couple electric and magnetic polarizations. Bi-isotropic media have interesting
possible applications and the main problem today lies in the fabrication, which has not yet
reached an industrial level. However, before starting making such media, their usefulness
must be shown theoretically.

INTRODUCTION

Isotropic chiral media have raised interest in the last decade due to their extra medium
parameter which gives added freedom in designing microwave and millimeterwave devices.
In fact, promising applications in antennas (polarization rotating lenses, compactly packed
microstrip antennas), microwave devices (low-loss phase shifters) and radar engineering (re-
flectionless surfaces) have been suggested, all based on isotropic chiral media.

New applications have induced interest in electromagnetic theory for such media [1, 2].
Actually, chiral media form a subset of the most general isotropic media, the bi-isotropic
(BI) media, which again form a subset of the most general linear media, the bianisotropic
media. Electromagnetic wave propagation in and reflection from such media is considered in
this paper. The basic phenomena, rotation of polarization, in propagation due to chirality
and in reflection due to nonreciprocity, of the BI medium, are discussed. Transmission-line
analogies are given to treat layered structures of bi-isotropic media. As an example it is
shown that a twist polarizer can be simply constructed with just a layer of BI material on a
conducting plate.

THE BI MEDIUM

The medium is seen by the electromagnetic fields through the constitutive equations, which
for time-harmonic fields (¢?“* dependence) have the general form involving four medium
parameters (3, 4]

D = ¢E + ¢H, (1)
B = uH + (E, (2)

or in terms of other parameters [6, 7, 5], where & is the chirality parameter and x, the
Tellegen parameter:

€= (X~ K)oty ¢ =(X+IK)VHoEo (3)

The relative chiral and Tellegen parameters
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K, = E, X, = sin? = Z, with  n =,/ pe _ Vi€ (4)
Ho€o

n n

will also be applied to simplify the notation. The present form of the constitutive equations
is not the only possible one and several other notations are in use in the literature. Different
forms of the constitutive relations for BI media are discussed in [5].

It is quite easily shown that, for lossless media, the parameters x and x together with € and
p have real values, which with other symbols can be written as { = ¢* [3]. Also, it can be
shown that the BI medium is reciprocal if and only if the Tellegen parameter x vanishes
[10]. Thus, the Tellegen parameter can also be called as the nonreciprocity parameter. Both
the chirality parameter x and the Tellegen parameter x have a simple physical meaning in
terms of plane wave properties, to be discussed shortly.

A medium with nonzero chirality parameter x requires microscopic constituents without
mirror symmetry, e.g., small metallic helices with the same handedness. Actually, first elec-
tromagnetic experiments on a man-made chiral medium were done in the 1910’s with copper
helices randomly embedded in cotton [8]. The Tellegen parameter x can be theoretically
realized by a medium whose microscopic constituents are permanent electric and magnetic
dipoles tied together to form similar pairs [9]. It is not known whether this kind of media
have yet been actually fabricated.

FIELDS IN BI MEDIUM

Let us consider time-harmonic electric and magnetic current sources J, J,, giving rise to an
electromagnetic field E, H in a homogeneous BI medium. The Maxwell equations

(1) (8- () o

can be written in uncoupled form for a homogeneous medium by writing the electric and
magnetic fields in terms of wave fields, also called self-dual electric fields [4, 6] E;, E_
defined by

1 . 1 .
E, = ——(eE—jgH), E_= ——(c’E + joH), (6)

cos ¥ cos v

where 77 = /p/e. In fact, (5) can be written as the uncoupled equation pair
VxE,-kE,=—-jn),, VxE_+k.E_= nJ_, (M)
with

ky = ko(y/n? — x2 £+ &) = k(cos ¥ £ &,), (8)

if the sources J, J,. are split into two parts J, and J_ as follows:

! (7?3 & -,1—.1,,.). (9)

J, =
* 7 2cosd Jn

The magnetic field can also be split into two parts, H = H, + H_, which have a simple
relation to the electric field:

H, = iLEi, 1 = ne¥, (10)
N+



and, similarly, the magnetic source has the decomposition

1 .
Jos = ——(£jnd + €73 ,). 11
mt 2cosﬂ(im +e ) (11)

With these definitions, the Maxwell equations (7) can in fact be written in the simple
isotropic form

V xE; = —jwpsHy — Iy, (12)

VxHi =jwe By + 4. (13)

This means, that if the sources J, J,, are split into two parts, the J,. gives rise to ”4” fields
just like in a simple isotropic medium with the effective medium parameters

€y = ee’(cosV + &,),  py = pe ?(cos VI + &,), (14)

and the minus part to minus fields in another isotropic medium with

€. = ee_j”(cos ? — K,), po = ,uej"(cos ¥ — K,). (15)

This idea simplifies the analysis considerably, since at any stage we may find the effect of a
BI medium by a cumulative effect of two different isotropic media.

PLANE WAVE IN BI MEDIUM

Plane wave propagation in a BI medium was first analyzed already in 1956 [12]. Let us
consider a plane wave propagating in the positive z axis direction in a BI medium. Let the
electric field at the plane z = 0 be written as E(0) = E; + E_. Each of the two wave fields
E, see their own isotropic media and propagate with the propagation factors, whence the

total field is

E(z) = Eye ™/ + E_e7*-%, (16)
ki = wy/prer = k(cos ¥ £ &,). (17)

The polarizations of the wave fields are obtained from (7), which outside the sources gives

—ju; x E4(0) ¥ k+E4(0) = 0. (18)

It is easy to see that the field vectors are transversal to u, and circularly polarized, because
they satisfy E1 - Ex = 0 and, moreover, the plus wave has the right-hand and, the minus
wave, the left-hand polarization. Thus, we may write

B(z) = 5e < ([B(0) — u, x B(0)]e** + [E(0) + ju, x E(0)}e"*)

= ek (co5(kkz)], — sin(xkz)J] - E(0), (19)

7, =1~ u,u,, J= u, X 1. (20)

The dyadic in square brackets is a rotation dyadic which turns the vector E(0) by an angle
—Kk.kz = —&kk,z in the right-hand direction when looking in the direction of propagation,
u,. Thus, the chirality parameter x has the simple physical meaning: it gives the rate of
polarization rotation of a propagating linearly polarized plane wave, relative to the rate of
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phase change of the wave in air: at a distance of A, the rotation angle equals ¢ = 27x. The
rotation dyadic can be written in the compact form with a dyadic exponential function

cos(nkoz)i — sin(nko-)7 = e"‘k"j. (21)

The polarization rotation in the BI medium is seen to be due to the chirality parameter,
because the Tellegen parameter only affects the phase change of the wave. The effect is
similar to the Faraday rotation in magnetoplasma or ferrite except that it is the same in all
directions of the wave because the BI medium is isotropic. This effect has many possible
applications in microwave engineering. For example, a polarization correction for a lens
antenna fed by a dipole, by introducing suitably distributed chirality in the lens material,
has been suggested [11].

The magnetic field of the plane wave can be written as

H(:) = Ho(2) + Ho(2) = 2B,(2) - 2B (2)

1 . . . 1
= geikeeer? ([E(0) — ju. x E(0)]e™"** + [E(0) + ju, x E(0)]e’~*2) = Ze*(*/2) . E(z).
n
(22)
This can be interpreted so that the magnetic field of the plane wave is rotated by an angle
9+ /2 with respect to the electric field. Thus, the Tellegen parameter x = nsin4 is directly
related to the excess angle ¥ over the right angle of the electric and magnetic field.

NORMAL REFLECTION FROM AN INTERFACE

Let us consider the plane wave incident from air to an interface of a Bl medium at z = 0. In
normal incidence the problem is easily solved by writing the incident field as a sum of two
circularly polarized fields, which do not couple but change places in the reflection. In fact,
because the field vector must be rotating in the same direction before ans after reflection,
the handedness is changed in reflection, whence the reflected wave sees another isotropic
medium than the incident wave.

Let the incident wave arrive from air z < 0 to the interface at z = 0 of a BI medium in
z > 0. Writing the incident field at the interface as

E'=E, +E!, (23)
the reflected field is
E'(0) = R,E, + R.E' =R -E', (24)
ﬁ = R+U+u- + R_u_u+, (25)
where the circularly polarized unit vectors are
u ! (uz — ju,) ! (ue + juy) 26
= —=(u; — juy), u. = —(u,+juy).
+ V2 Juy V2 Jjuy (26)
Inserting
Ry = Nt — 7o (27)

77:t+770’
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the reflection dyadic (25) can be written as [6]

R= %(R+ +R.), - %(R+ -R.)J= Redj’ (28)

where R denotes the total reflection coefficient and ¢, the angle of rotation of the reflected
polarization,

_ | m* = 2nn,cos P + 52 (29)
7%+ 27, cos 9 + 2’
27 . 2

tang = — i S sind = X (30)

n* — 2 &~ fly

It is seen that the chirality parameter x does not affect the reflection at all. On the other
hand, the Tellegen parameter x causes rotation of polarization in reflection. However, +90°
rotation is possible only for ¢, = pu,. The reflection rotation is another quantity giving
physical meaning to the Tellegen parameter .

The rotation of the reflected field is a demonstration of nonreciprocity of the BI medium with
nonzero Tellegen parameter. In fact, a field incident with the polarization of the reflected
field does not reflect with the polarization of the incident field but is rotated by another
angle ¢. This effect also exists for BI slabs and it may find important applications in the
future when media with nonzero Tellegen parameter can be reliably fabricated.

LAYERED MEDIA, NORMAL INCIDENCE

The previous concepts can be applied to a piecewise homogeneous BI medium where the
interfaces are planes perpendicular to the z axis. If a plane wave is incident in u, direction
to the layered structure, in each homogeneous section the field can be expressed in terms of
four waves: one plus and one minus wave in both directions. The plus waves in +u, direction
are coupled only to minus waves in —u, direction and vice versa. So the problem can be split
into two scalar problems which can be handled through transmission-line theory except that
the properties of the transmission line are different for waves traveling in opposite directions.
Thus, we are motivated to study a more general transmission theory [13].

GENERALIZED SCALAR TRANSMISSION-LINE THEORY

The generalized transmission-line equations are written in matrix form as

(?g;yz‘”(aéﬂ m@b)(%g>’ (31)

where prime denotes differentiation with respect to z. L is the distributed inductance and
C the capacitance on the line. a and b are two new parameters of the transmission line and
they may have complex values, although for lossless lines they are real. To emphasize the
connection to the field theory, we can write

a=kVLC, b=x,VLC =sindVLC. (32)

It can be easily shown that the propagation factors for waves propagating in the opposite
directions are analogous to those of the previous sections if the plus wave is propagating in
the positive z direction
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% = wVLC — b + wa = B(cos ¥ £ k. ), B8 =wVIC. (33)

The corresponding characteristic impedances are

+

+ _ B*Fw(a+35b) wl _ 7cF 7 - _L____i 24
z wC Bt Fw(a—jb) © c Y (34)

The most general voltage function is, then, of the form
U(z) = Ute "2 L U=#72, (35)

and the corresponding current function,
I(z) = Tte s L 72 Y tU+e 72 _ Y U7

e AT /et (36)

Reflection and transmission at a junction

Let us consider a junction of two transmission lines 1 (z < 0) and 2 (2 > 0) and a voltage
wave incident to the junction in line 1, U;t. There arises a reflected wave and a transmitted
wave with the reflection coefficient R and transmission coefficient T defined by

- — RU}, Uf=TU;}. (37)

From continuity of voltage and current at the junction we can solve for the two coefficients:

B Vi -Vt Zi(ZF - ZF) _ ZT - ZT s (38)
Y +Ys' ZT(Z++ZI) zZi+zy

T:)/1~+},1+_ zH(zt + 27 )_2Z2 cos ¥, o (39)
YT+ Y ZH (2 +2r)  ZF+ Zy

The last expressions are only valid for a lossless line 1 with Zf = Z,e¥/%1. The coefficients
defined for voltage amplitudes appear simpler in terms of admittances. Definitions in terms
of current amplitudes are not the same because of Z* # Z~ and, they appear simpler in
terms of impedances. Similar expressions are valid for the reflection from a load admittance
Y; when the admittance Y,' is replaced by Y;:

Y. _ Z(2,- 2)
Yo +YL Z0(Zu+2Z7)
Unlike for ordinary transmission lines, the magnitude of the reflection coeflicient is not

necessarily unity for the case when all the power is reflected. For example, for open circuit
at z = 0, we have Y7 = 0 and

R =

(40)

Y .
Rope = o= = V™ (41)
instead of R = 1. For short circuit Y7 = oo we have

Ry =-1 (42)

as for the ordinary line.
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Input impedance

The reflection coefficient at a point z < 0 in line 1 can be written as

_U(z) _ R(O)U*e**
T UH(z) Uteit:
Again, it is noteworthy that the parameter a, or ., does not affect the reflection coefficient.
The admittance at the point z < 0 of a line loaded by an admittance Y7 is

I(z) Y*U*(2)-Y U (z) Y*-Y R(z)
U(z) UH2)+U-(z) ~  1+R(2)

_ YYL cos(Bdcos ¥ + ¥) + 7Y sin(fd cos 9)

" 7 Y cos(Bd cos 9 — I) + 7Y sin(Bd cos 9)’
The correspondence with the expression of the ordinary line is seen immediately. In fact,
setting ¥ = 0, the well-known expression
_ YYL cos Bd + jY sin Bd

Y cos 8d + 7Y sin Bd

= R(0)e?F+87)x = R(0)e/=co?, (43)

R(z)

Yio(2) =

(44)

Y (45)

is obtained.
Impedance matching

The quarter-wavelength matching section of the ordinary transmission line can be generalized
for the present transmission line. Requiring that the imaginary part of the input admittance
(44) vanishes, gives us the following relation between the parameters 3d, ¥ and Y;/Y:

sin(Bd cos 9)[YZ cos(Bd cos ¥ + ¥) ~ Y cos(Bd cos ¥ — 9)] = 0. (46)

Excluding the simple solutions sin(8d cos ¥) = 0, for which we have Y;,, = Y7, there is another
set of solutions satisfying

YZ-Y?
tan(Bd cos?) tan ¥ = _YIL;-+——Y2 (47)
Applying this condition in (44) gives us the simple relation
yz
},in = ?L, (48)

which is the same as for the ordinary quarter-wavelenth line. Thus, if we wish to match the
load admittance Yz to an admittance Y,, the line admittance must be chosen as

Y = J/Y.Y;. (49)

From (47) it can be seen that, for ¥ # 0, the matching length of is changed from the ordinary
value of quarter wavelength and shorter matching sections are in fact possible.
In the ultimate case, choosing ¥ = /2 for Y7 > Y and ¥ = —x/2 for Y < Y, (47) becomes

ﬂdzﬂ =AEM
YZ+Y? 47 |Y2+Y?

This gives always d values smaller than A/4. Actually, the length depends on the mismatch
of the two impedances: for small mismatch (Y7/Y, &~ 1) the required line length is small,

. (50)

, or
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whereas for the most complete mismatch (Y;/Y, = 0 or Y/Y, = o), the length is A/27 ~
)/6. This means more broadbanded matching than with a quarter-wavelength section of a
conventional transmission line.

GENERAL PLANE WAVES IN LAYERED BI MEDIA

Finally, we consider general plane-wave propagation in a piecewise homogeneous layered BI
medium with plane-parallel interfaces [14]. In this case, the plus and minus waves couple to
one another and the problem cannot be handled in terms of two separate scalar transmission
lines as for normal incidence. Also, in the simple isotropic case (x = 0, x = 0) with
obliquely incident plane waves, the TE and TM polarizations do not couple to each other,
which again leads to two scalar transmission lines. In the general BI problem the TE and
TM polarizations have no special importance.

Let us assume that the plane waves are propagating normal to the z axis, which imposes
no restriction to generality. For a single plane wave excitation, waves in all layers propagate
with the same velocity in the y direction, which implies that all wave vectors have the same
component k,. It turns out that in each layer there are four plane wave components with
the same k, component: two plus waves and two minus waves [15]:

E(r) :I_‘i+ eIk Ty ﬁ_ e k-T4 E+ e Ik+ Ty i:::_ e—jk_-r’ (51)
H(r) =H; 7%+ "+ Ho e /%74 Hy ek T4 H_ e7/k-7, (52)
The vectors denoted by q correspond to waves propagating in the positive z direction and,

those denoted by a, in the negative z direction. It is assumed that the propagation factors
B+ and B_ defined by

iiz uz,gzt + uykya Eiz _uz,B:t + uykya (53)

By =KL — k2, B = kL — kI, ki =k,(yn?—x? LK) (54)

have a positive real part. Because of the coupling between scalar transmission lines, the
general plane-wave problem leads to a concept which can be labeled as vector transmission
line.

VECTOR TRANSMISSION-LINE THEORY

In the vector transmission-line (VTL) theory, the transversal field components are repre-
sented through the ’vector voltage’ e and vector current’ j defined by

e=1,-E j=-u,xH=-J-H, (55)

The vector voltage in a homogeneous region can be written in terms of those correspond-
ing to the four eigenwaves and the result presented in the compact form with two dyadic
propagation factors, one for each direction of propagation,

e(z) = e 7P e (0) + &8 e (0), (56)
= — = —_ =t <= — —
B=p,asa _+B_a_a_, p=p,a,a +f_ a_a_. (57)
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The basis vectors a, a4 are the transversal projections of the circular polarizations of the
electric wave fields propagating in the respective +u, directions:

Bi=u, Fjcsuy, Ai=u. £ jesuy, cx = cosby = Py /ky, (58)
and their reciprocal vectors are

a;z :F%u,x ag, a;= :tju,x ar= J=u, a; xa_=j(cy+ec). (59)

The basis {a,,a_} and the reciprocal basis {H;,K'_} satisfy the orthogonality relations

1 — —_ —! 3!

-— - — —
a,-a_=a_-a,=0, a,-a,=a_-a_=]I, (60)

and similarly for the other basis vectors {a,,a_}, {H;, gl_},. The two propagation dyadics

are not independent, in fact, they are related by E:Z * if B and ky are real (lossless case).
For a lossy medium, the relation is a bit more complicated [15].

The dyadic characteristic admittance for the transmitted wave can be easily identified from
expressions of the transmitted vector currents

Ji) =¥ (), j()=-Y-e(2) (61)
in the form
—_ —! —_ —l — ! pa———
¥=—u xj (—“ - —’“) . Y=uxj <——“‘ - ) L (82)
M+ - T+ n-

The relation between the two dyadic admittances can be written for lossless media simply
< =
as Y=Y T*, where T denotes the transpose operation.

For a vector transmission line z < 0 terminated at z = 0 with a dyadic admittance }3[,
defined through the relation

3(0) =Y <(0), (63)
a reflection dyadic ?{ (z) can be defined for waves reflecting into —u, direction:
e(x)=k(x)} ¢ () (64)
ﬁ(z) can be expressed in terms of admittance dyadics as follows
R (2) = ejg‘- R (0) - ejz‘, B (0) = (f’z + }z’:r,)“1 . (}=’2 - 1=’2L) (65)

Finally, an expression for the input admittance }?,-,, (z) is obtained from the reflection dyadic
expression in the form

Yin (2) = [¥ e85 (¥ = ¥1)"'= ¥ -6 (¥ + Y1)V
(e (Y = Pro)t 4 P (Y + Vo) Y (66)

Other forms can be found in [15]. After some algebra, the expression (66) can be seen to

reduce to the well-known isotropic formula for normal incidence when Y, is a multiple of
the unit dyadic I,.
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APPLICATIONS OF VTL THEORY

If we require that the two-dimensional determinant of the reflection dyadic is zero, there
arises an equation for the angle of incidence of the plane wave. Since this means that one
of the eigenpolarizations (transverse polarizations which do not change in reflection) is zero,
the angle can be called the Brewster angle. After considerable algebra, an explicit expression
for the Brewster angle 6p can be obtained in the form

4R|R £ (C./C)|[R % (C-/Cy)]
C.C_(R?—1)? ’

tan’fp =

(67)
with

C, = J1—(1/ns), C-=y1-(1/n), (68)

_ (17+ - 770)("7— - 7]0)
k= J (e T o) F 1) (©)

For a lossless BI medium we have 7, = n*, whence R is a real quantity. In this case,
(67) has real angle solutions 8p. For the simple isotropic interface we have, by setting

C; =C. = /(prer — 1)/ pires and R = (7 — 10)/(n + 7o), the well-known solutions

y"‘(/"”' - 6'), tan 982 — €"‘(6"' — P'r). (70)
Hr€r — 1 He€r — 1

There is a new phenomenon, however, because it turns out that two real Brewster angles

tanfp; =

may exist for certain media [16].

As another example, let us apply the VTL theory to the problem of a BI slab backed by
a conducting plane. More applications and tests of the theory can be found in [15). A

=
perfectly conducting plane at z =0 corresponds to Y= 0o, whence the expression for the
input admittance (66), for normal incidence, reduces to

1

}=’>,~" (2) = ﬂ[j cos ¥ cot(kz cos 19)7, + sin 197], (1)
valid for z < 0. The reflection corresponding dyadic has the form
1 = 1 = = =
Be (2Tt Pin) - (STi= Yin) = Reol + BerJ (72)

Mo To
with the co and cross-polarized reflection coefficients defined by the expressions

R = 52 cos? ¥ + (n? — 7?2) sin’ (kd cos ¥)
° " " [, cos ¥ cos(kd cos ¥) + 77 sin(kd cos 9)]2 — 72 sin ¥ sin?(kd cos ¥)’

R. = 2n7, sin 9 sin’ (kd cos ¥)
" [nocos ¥ cos(kd cos F) + jn sin(kd cos ¥)]? — 72 sin® 1 sin®(kd cos ¥)

For lossless case, these coefficients satisfy |Reo|? + |Rer? = 1.

(73)

. (74)

If we wish to design a twist reflector with the slab of BI medium, the co-polarized reflection
is required to vanish. This happens if the following condition between the parameters kd, ¥
and 7 is valid [17}:
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7o cos ¥

sm(kd Ccos 19) = ——ﬁ (75)
Mo — 7
This has real solutions for lossless BI media only for
/M0 < [sind| = [x.|, (76)

which requires nonzero Tellegen parameter .
The twist reflector rotates the reflected field by 90° and gives a phase shift in reflection

defined by

R, =€, 4 = cos™}(n/n,sind). (77)

This effect can be obtained even for small values of x if 7/%, is small enough to satisfy the
above condition, but, a broad-banded operation is obtained for /7, = 0.8 when ¥, is chosen
slightly larger than 7/7,, as is seen in the figure.

Co-polarized reflection coefficient for a plane wave incident to a layer of bi-isotropic
medium with a conductor backing, as a function of normalized thickness kd. The
normalized impedance has the value n/7, = 0.8 and the normalized Tellegen param-
eter varies between y, = 0.7...1.0. It is seen that the co-polarized reflection is small
for a wide band when x, has a value slightly larger than 7 /7,.
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Dictionary between different definitions of
bi-isotropic material parametres

Ari Sihvola

Helsinki University of Technology, Electromagnetic Laboratory
Otakaari 5 A, 02150 Espoo, Finland

Due to the fact that there coexist different ways of expressing the constitutive
relations of bi-isotropic media, and furthermore, that the quantities used in these
may carry the same name without obeying the same definition, it is essential to
write explicitely the interconnections between these. The present report serves this
purpose!.

As a practical rule of thumb (often needed in the Workshop’s discussions), which

will be derived in this report, among others, is the following:

e IF YOU SEE SOMEBODY PRESENTING RESULTS OF CHIRAL MEDIA, AND SHE (HE)
TALKS ABOUT CHIRALITY ADMITTANCES (£.), AND YOU WISH TO KNOW THE DI-
MENSIONLESS CHIRALITY VALUE OF THIS PIECE OF MATERIAL, MULTIPLE THE AD-
MITTANCE FIGURE BY THE FREE SPACE IMPEDANCE, ng ~ 377 Q, AND YOU WILL
HAVE THE CHIRALITY PARAMETER k. — This is approximate, and exact only for ma-
terials where 4 = pg, but the experimental results so far show permeabilities not much
different from po. Should you desire more accurate transformation formulae, please keep on

reading  :-s

1 The basic relations

Most of the presentations given in the present Bi-isotropics’93 workshop speak about

bi-isotropic media using the language and terms of the following constitutive rela-

'Much of the material to follow is common to that in [1].
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tions:

D =€E + (x — jr)/hoeo (1)
B =pH+ (x +jr)yEoe E (2)

The relations give the effect of the electric (£) and magnetic (H) field strengths
on the electric (D) and magnetic (B) flux densities. The effects can be seen to be
isotropic (i.e. the direction of the fields does not matter), because the coefficients
representing the linear relation between these are scalars. These parameters are,
in addition to the normally encountered permittivity e¢ and permeability u of the
material, those that describe the magnetoelectric coupling. The degree of chirality
is contained in x, a dimensionless (Pasteur) parameter, and x is the (also dimen-
sionless) Tellegen parameter measuring the nonreciprocity of this general biisotropic
material. €y and pg are the permittivity and permeability of the vacuum. For x = 0,
the medium is (nonreciprocal) chiral, and it can also be termed Pasteur medium.
The case when the chirality vanishes, x = 0, represents a nonreciprocal medium,
that can be called Tellegen medium, because the form the constitutive relations that
Tellegen first proposed for a nonreciprocal medium was of the form of (1), (2) with

k=0.

It is worth noting that these relations implicitely assume sinusoidal time de-
pendence (followed with the convention exp(jwt) in this paper), meaning that the
parameters are dispersive. The time dependence comes through the inverse Fourier
transform, and in order to render real electromagnetic fields (to represent a physical
quantity), the parameters have to be real functions of jw. On the other hand, the
four material parameters of a lossless medium have to be real [2], leading to the con-
clusion that €, u, x have to be even functions of w, and x an odd function. Hence,

there is no chirality in electro- or magnetostatics.

In the research of chiral media, there are many different constitutive relations
in use (see, for example [3]) due to the possibilities in connecting the electric and
magnetic quantities with another. In the following, the parameters in different sets
of constitutive relations are related with each other. This will help translate elec-
tromagnetic results derived in one system to the other system. The most common
chirality representations will be treated and their extensions to the nonreciprocal
chiral regime, i.e., the chiral constitutive relations that are considered will be gen-

eralized for bi-isotropic media.

The problem will be that in different systems, the same name has been given to
parameters that are not absolutely the same, for example permittivity and perme-
ability. Therefore bookkeeping is essential which system’s permittivity is considered

as one speaks about permittivity. In the following, all relations are referred against
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the constitutive relations (1), (2) and this permittivity is plain € and permeability
plain g in the following analysis. The corresponding parameters in other systems

are denoted by subindices.

2 Post relations

The Post {4] set of constitutive relations for chiral media, also derived phenomeno-

logically by Jaggard, Mickelson, and Papas [5], is the following

D= EPJE _jécB (3)

_ 1 - _

H=—B-jt.E (4)
Hri

where the subindices in € and u now refer to the system, and the chirality comes
forth through the chirality admittance £.. To complete the relations in order to cover
general bi-isotropic media, a fourth scalar parameter describing the nonreciprocity is
needed. In harmony with the chirality admittance €., a nonreciprocity susceptance
1 is here suggested, which also has the dimension of amperes/volt. The relations,

after the inclusion of nonreciprocity, look after that like

D=¢,E+4.B—-j¢.B (5)

- 1 - - _

H=—B-y.E-j{E (6)
Hps

The connections between the parameters in (5), (6) and (1), (2) can be worked

out and are the following

€py = € — M(X2+K2) (7
frs = H (8)
Vo€

d)n = ﬁx (9)

i
¢ = Vhoto (10)

[

and, the other way

€= &+ pes (Y3 + €2) (11)
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B = Hp; (12)
X = ﬂpﬂbn/v Ho€o (13)
K= #psfc/\/#oﬁo (14)

3 Condon-Tellegen relations

The constitutive relations of chiral media that have received their label after Condon
[6], look like the following, permitting an explicit time dependence in the fields:

_ _ 0H
D= CCE — Xc'a—t (15)
_ . OE
B =puc.H +XCW (16)

with the parameter y. (now not a nonreciprocity parameter) measuring the ma-
terial’s magnitude of chirality (dimension sec?/meters). This is a reciprocal chiral
material. On the other hand, a material that is not chiral but is nonreciprocal was

suggested by Tellegen [7] to obey the following constitutive relations

where ~v,, dimensionally sec/meters, measures the nonreciprocity of the material.
These material relations can be combined for a set of bi-isotropic constitutive rela-

tions:

_ _ _ oH
D = ¢ E+ YerH — XCT_6—t~ (19)
_ _ ~ OFE
B=peH+7E+ XCTE (20)

For time-harmonic field dependence, the connection of these material parameters
to those in (1), (2) is

€cr = € (21)

36



Ber = | (22)
Yer = X+/Hofo (23)
Xor = K4/ #Ofo/w (24)

4 Drude-Born-Fedorov relations

The relations emphasizing the nonlocal character of a chiral medium in its interaction
with the electromagnetic field,

D = eppe(E + BV x E) (25)
B = ppep(H + BV x H) (26)

have been in much use by Lakhtakia, Varadan, and Varadan, and termed by them [8]
after Drude, Born, and Fedorov. (An advantage in these relations is that these are
not restricted to Fourier space, and the fact that from these, it can be directly seen
that chirality vanishes for electro- and magnetostatics.) Here the chirality parameter
B has the dimension of length. One way of incorporating nonreciprocity in these

relations would be through the Tellegen parameter:

D = eppe(E + BV x E) + v, H (27)
B= ,um,p(ff + 8V x I—{) +~.E (28)

However, as often only time-harmonic field dependencies are considered in elec-
tromagnetic applications, it might be justified to tolerate complex quantities and
the appearance of the imaginary unit 5 in these relations (like happens in relations
(1), (2) and (5), (6)). This suggests completing the bi-isotropic DBF relations in
the form

D = eue[E+ (84 j)V x E] (29)
B= P'DBP[E + (8 - Jja)V x I—ﬂ (30)

where now the nonreciprocity parameter a has the same dimension of length as the
chirality parameter 8.
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The conversion of the material parameters between the sets (1), (2) and (29),

(30) is, for time-harmonic fields

€ppr — € [1 - (X2 + '{2)#70:2] (31)
€
Hpsr = i I:l - (X2 + ’92)#::] (32)

X+/Ho€o/w (33)

 pe— (X + K?)poo

VL (34)

 pe— (X2 + K?)poo

and, inversely,

€ppr
= 35
) 1—kgsr(a2+ﬂ2) ( )
p= Fpsr (36)

1- kgnp(az + ﬁz)
= wy’DBF:DBPaz/\/ #0260 (37)
1- knnp(a + 13 )

_ wﬂbnpfbspﬂ/\/ Ho€o
1- kng(az + [32)

with

kzzmp = wzuDBPeDBP (39)

5 Discussion

A general bi-isotropic medium requires four scalar material parameters in its charac-
terization. In this presentation, instead of connecting the electromagnetic quantities

in a classical way, through a matrix [9]

(3)-(53)(%) )

the effects (electric and magnetic polarization, chirality and reciprocity) are sepa-
rated in the constitutive relations (1), (2):

—~
v Mw]]

(41)

)= (gm0 )

oty
S——
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For a lossy material, all these four parameters can be complex for time-harmonic
excitation of the fields.

In the other systems of constitutive relations that have been briefly discussed in
this communication, the parameters have been expressed as functions of the material
parameters of (1), (2). It is worth noting that in all these transation formulas, always
the permittivity, permeability, and nonreciprocity are even functions of chirality
(given in one of the other systems). This means that these three parameters are
equal for a material and its mirror image (which is a medium possessing & with a
change in sign with respect to the original medium). Also & is an odd function of

all chiralities of the other notations, which also agrees with intuition.

Not so intuitive is that also nonreciprocity behaves in a similar way, a fact that
is reflected by the similar position of x compared to « in the expressions above. In
other words, also the permittivity, permeability, and chirality are even functions of
nonreciprocity. And again in the translation formulae, nonreciprocity is itself always
an odd function of the nonreciprocity parameter of the other notations.
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THEORY OF GUIDED WAVE IN CHIRAL MEDIA :
A STEP FOR MEASURING CHIRAL MATERIAL PARAMETERS

Frédéric Mariotte
CEA-CESTA
Service Systeme
BP No 2
33114 Le Barp, France.

The constitutive relations of isotropic lossy chiral composite consisting of
chiral objects for time-harmonic fields exp(-iot) have the form D = ¢ E + i5.B and
H = iE E + B/u, where g, = g,(¢'+ i), uo = Uoln' + ") and E.= &+ 05
represent complex permittivity and permeability, and chirality admittance, which is
a measure of the handedness of the medium. These materials possess two bulk
eigenmodes of propagation, a right circularly polarized (RCP) and a left circularly
polarized (LCP) plane wave with two differing complex wavenumbers. Recently,
the guided wave propagation in chiral media has been the subject of intense
research. Among those studies we can mention the introduction by P. Pelet and N.
Engheta [1] of chirowaveguides which consist of cylindrical wave-guiding

structures filled with isotropic lossless chiral materials.

In this talk, we review all the results of our recent theoretical study on
parallel-plate waveguide partially filled with isotropic chiral materials (loss or
lossless) [2-4). First, we present an overview of the theory of chirowaveguides.
Secondly, we analyse the study of the canonical problem of reflection and
transmission of guided modes at an air-chiral interface and at a lossless chiral slab
transversely located in a parallel-plate waveguide. In those two problems, the chiral
materials were assumed to be lossless; now we theoretically study the effect of
lossy chiral materials on guided modes in such waveguides and furthermore we
analyze, first, the reflection and transmission of guided modes at a lossy chiral slab
(case a) and secondly the reflection of a lossy chiral slab backed by a perfect
conductor (case b). The motivation behind this study is the potential application of
this problem in the design of novel measurement techniques for determining

material complex parameters of lossy chiral composites.

So we have studied the effect of chirality and then the influence of lossy
materials in all these problems. The results are the following. For our analysis on
reflection and transmission of guided electromagnetic waves at an achiral-chiral

(lossless) interface in a paraliel-plate waveguide, it is found that in order to satisfy
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the boundary conditions at the achiral-chiral interface, the reflected and transmitted
waves need to be hybrid. For lossy materials, we first present the results of our
analysis on the dispersion relations, Brillouin diagrams, cut-off frequencies,
propagation and attenuation coefficients of the modes. It must be noted that for
lossy chirowaveguide, the dispersion curves approach the line k, or k_according to
the chiral parameters €. and . Secondly, we have obtained the reflected and
transmitted modes (only case b) and have evaluated the effect of chirality and the
loss of the medium on power of reflected and transmitted waves. Finally we
address rules to solve the inverse problem for the potential applications in material
characterizations. Electromagnetic shielding and design of devices and components

could be also potential applications of these studies.

In this talk, we present also briefly other Microwave Chirality Research at
CEA-CESTA : First, modelling of heterogeneous chiral materials by the calculation
of electromagnetic scattering of a chiral element (thin helix) and secondly the design

of chiral shields (preparation of chiral samples and free space measurements) [5-6].
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Measuring electrical, magnetic, and chiral
material parameters

Arto Hujanen

State Technical Research Centre, Telecommunications Laboratory
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Problem

- unknown plane slab

- what are the electrical material
parameters

e,1L,K
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Measuring traditional, nonchiral,
material

- two complex parameters €,

- measuring methods:
- resonator methods
-gor
- low lossy materials

- reflection / transmission
methods
- transmission line methods
- free space methods
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Reflection/Transmission methods

S21

- measurement of the reflected
and transmitted field

- measurements are done with
well calibrated network analyzer
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Transmission line method

- sample 1nside the waveguide

- preparation of the sample is
difficult




Free space methods

- purpose to measure reflected and
transmitted signals in free space

- no preparation of small samples

- problem: diffraction from the
edges of the slab
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- focusing antennas

- no edgediffractions
-calibration with TRL-method

- time domain gating to avoid
multible reflections
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Calculating material parameters
from measured S-parameters

- measured S11- and S21-

parameters

S, =8, +1
2S,,
F=K+JK>-1

_ Sll +S2] -
1-(S§,,+5,)

K =

k =§<1n<T>+n2n> n=0,+1, +2....

. 1-T &k
C 14Tk,
_I+T &
1-T k&,

i,
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Measuring the chiral material

- three complex parameters €,
and KX = more measurements
are needed

- polarization of the wave is
changed when the wave goes

throught the chiral slab

- electrical field behind the slab

E = E[(ﬁx +tan(—kOdK)b7y)

!

- lets measure the polarization
properties of the transmitted field

53



S21 T @
S5 V |

- transmitter and receiver antennas
linearly polarized

_ S; =8, cos(o) G- AR sin(1t)—j cos(7)
N A sin(o) AR cos(T)+ 7 sin(T)

K:;fﬁ%%ncﬁ+1

25,
Fr=K+vK> -1

. S, +5,.J(01+G*) -T

_1—(5”+521 (1+G*)r

k.= §<IH<T>+”27‘> n=0,+1,42,..
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Suhteellinen epsilon, myy ja kappa, Levy 4, alfa=-50
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Taajuus / GHz

Taajuus Re(er) Im(er) Re(pr) Im(pur) Re(x) Im(x)

1,00E+10 3,12 -0,23 0,87 0,00 . 038 0,03
1,10E+10 3,43 -0,22 0,88 0,00 0,29 0,02
1,20E+10 3,67 -0,22 0,89 0,00 0,23 0,03
1,30E+10 3,85 -0,26 0,89 0,00 0,20 0,03
1 40E+10 3,95 0,32 0,89 0,00 0,19 0,02
1,50E+10 3,98 -0,37 0,88 0,00 0,17 0,02
1 ,60E+10 4,01 -0,37 0,87 0,00 0,16 0,02
1,70E+10 4,08 -0,33 0,86 0,01 0,15 0,01
1,80E+10 4,18 033 0,86 0,01 0,14 -0,01
1,90E+10 427 -0,39 0,86 0,02 0,13 0,02
emk440
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Electromagnetic Properties of Lossless n-Turn Helices in the

Quasi-Stationary Approximation

L R Arnaut and L E Davis

Department of Electrical Engineering and Electronics
The University of Manchester Institute of Science and Technology
PO Box 88, Manchester M60 1QD, UK

1 Introduction

The study of electromagnetic (EM) properties of bi-isotropic (BI) media at UMIST is com-
paratively new. It is the subject of the first author’s PhD Project in Applied Electronics.
The project aims to be a '3M’ approach:-

o modelling of chiral and BI media: this includes the fundamental study of the physical
properties of general Bl media, as well as the properties of specific chiral structures

that may be implemented at microwave frequencies;

o manufacturing of chiral and BI media: advances in the tailoring and practical imple-

mentation of suspended chiral microstructures are sought;

o measurement of chiral and BI media at microwave frequencies: because of the com-

plexity of the EM effects, new measurement techniques are considered.

Advances in all three areas have been made in the recent past. In this presentation, we
will discuss one aspect, ie the modelling of practical chiral structures. The EM properties
of an n-turn helix will be derived in the quasi-stationary approximation, its performance

in terms of EM activity will be predicted and compared with published data.

2 Field Induced by an n-Turn Helix

Chiral properties of ideal, short-wire helices, shown in Fig 1, have been derived by Jaggard
et al. The helical structure under consideration here is sketched in Fig 2. The spring has
n turns, free length 2!, external diameter 2a, gauge diameter 2b and pitch p = 2;1 It is
made of perfectly conducting wire and embedded in a lossless medium. It is assumed that

21 > 2a so that fringing of the magnetic field may be neglected.
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An external plane wave, characterized by {E,, H.}, is incident onto the helix. After some
calculations, it is found that the induced electric field E; is related to the induced current

I, by:-

n al;
. —_ —— <
E;, « 4lr( &), r<a (1)
n a? o1,
re (% >
R ( at)’ r=d (2)

and is directed tangential to concentric circles around the helical axis. Thus, the induced
electric field has a constant amplitude on concentric circles around the helical axis, it
increases linearly with distance inside the helix and decreases as "r—z outside the helix.

This induced field affects the field scattered by the helix. In a composite medium of v helix
vol pct springs embedded in a dielectric host, this causes the interaction between springs to
be much larger than in a composite medium of the same vol pct v of nonchiral conducting
particles. This explains why the EM properties of dielectrics with embedded microsprings

change drastically at a threshold v = v, which is much lower than the classical 10% limit

used in multiple scattering theory [2].

3 Chiral Admittance and EM Rotation for an n-Turn
Helix

EM activity caused by chiral objects is basically an interaction between E and H, ie a
coupling between the capacitance C, and inductance L, of a collection of chiral objects.
In the quasi-static approximation, the helices are very small as seen by the incident wave,
hence the wave impedance of the chiral medium may then be calculated from the lumped
impedances of the helices.

Compared to the idealized short helix model. inclination of the windings as well as inter-
action between them needs to be accounted for in the model. This results in an expression

for the chiral admittance of a single round-wire helix:-

€ 2l (ra)?
(n—-1) log( 2 2—2)
nb /1+( )

in which €, u denote the permittivity and permeability of the host medium, respectively.

With appropriate averaging over the (random) orientation of the helices and their concen-

tration NV, this allows the resonance frequency f, as well as the chiral admittance ¢, at
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resonance to be calculated [1]. The results are listed in Table 1, in which the computed
EM rotation is compared with previously measured data. The subscripts 1 and N refer to

a single helix and N helices/m?, respectively.

| Quantity [ Unit || Ref2 1 Ref3 B
€ host - 2.5 (at 10 GHz) | 2.95 (at 7 GHz)
Helix Concentration N 108 /m?® 139.8 36.7

vol % 3.2 0.8
Ly nH/m 5.32 6.06
Cn fF/m || 93.7 89.4
fr = grpm— GHz 7.13 6.84
(&e)s pS m? 9.13 9.43
(¢e{f = fr)h (computed) pdeg 074 100
(S uSm® | 425.4 115.3
(#¢(f = fr))n (computed) deg 42.27 12.88
(¢:(f = fr))~ (measured) (approx) | deg NA 5-15

Table 1: Comparison between Predicted and Measured Data

Given the fact that the information on the host material and helices is insufficient for
accurate calculations at f, (and, therefore, ¢;), and taking into account that the computed
values for ¢, serve as a lower limit due to multiple scattering, it may be concluded that
the model is sufficiently accurate to provide a good estimate of the EM rotation by the
sample.

Finally, Fig 3 shows the dependence of the EM activity of a single helix on its dimensions,

which have been normalized with respect to the helix length.
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Plane wave propagation in a uniaxial
bianisotropic medium

Ismo V. Lindell and Ari J. Viitanen
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Abstract

Uniaxial bianisotropic medium is a generalization of the bi-isotropic and chiral media
which recently have been subject to intensive research. Such a medium results, for
example, when microscopic helices with parallel axes are positioned in a host dielectric
in random locations. Plane wave propagation in such a medium is studied and a simple
solution for the dispersion equation is found. Numerical examples for the wave number
surfaces of the medium are displayed.
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application to a polarization
transformer
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Abstract

Uniaxial bianisotropic medium is a generalization of the well-studied bi-isotropic and
chiral media. It is obtained, for example, when microscopic helices with parallel axes
are positioned in a host dielectric in random locations. Plane wave propagation in
such a medium is studied and a simple solution for the dispersion equation and for the
eigenwaves are found. As a numerical example, polarization properties of a transverse
wave propagating in a uniaxial bianisotropic medium is considered. The results give a
simple possibility to construct a polarization transformer with a transversely uniaxial
chiral medium for changing the polarization of a propagating plane wave.
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Plane-wave propagation in a
transversely bianisotropic uniaxial
medium

Ismo V. Lindell, Ari J. Viitanen, Paivi K. Koivisto

Report 133
January 1993

Abstract

Transversely bianisotropic uniaxial medium considered in the present paper can be ob-
tained, e.g., by mixing metal helices with an isotropic base medium in such a way that
the axes of the helices are randomly oriented but perpendicular to a fixed directior in
space. The medium is a generalization of the well-studied chiral medium and some-
what similar to the recently studied axially bianisotropic uniaxial medium, which has
interesting polarization properties. Plane wave propagation in the medium is studied
and the solution for the dispersion equation is given. Numerical examples for the wave
numbers corresponding to the two eigenwaves of the medium are displayed. It is seen
that, unlike in the axially bianisotropic uniaxial medium, there are no optical axes in
the present medium, in general.
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Novel uniaxial bianisotropic materials

Sergei A. Tretyakov, Alexander A. Sochava

Radiophysics Department
St. Petersburg State Technical University
195251, Polytekhnicheskaya 29, St. Petersburg, Russia

Recently, a novel concept of artificial composite materials with §2-shaped metal
elements was introduced in [1]. The idea originated from wide and intensive studies
of isotropic chiral media and their electromagnetic properties in microwave regime.
A typical chiral inclusion — a small wire helix — can be considered as an electric
dipole connected with a magnetic dipole in such a fashion that high-frequency elec-
tric field induces a magnetic field parallel to the original electric field component,
and vice versa. This causes optical or microwave activity - rotation of the polar-
ization plane of a linearly polarized propagating wave. Such chiral structures most
effectively interact with circularly polarized waves, since the right and left circular
polarizations are eigenpolarizations of waves in unbounded biisotropic media. How-
ever, one may suggest other geometrical configurations which can provide stronger
wave-material interaction in other circumstances we deal with in microwave engi-
neering. One of such modifications was introduced in [1], where it was suggested to
use particles shaped like the capital Greek letter  instead of chiral helical particles
to ensure first-order effect on the propagation factor in a partially filled rectangular
waveguide. The material can have other interesting applications [2]. In a regular
microstructure with (}-shaped conductive inclusions, there exists additional inter-
action between electric and magnetic fields which lay in orthogonal planes, and the
material can be modelled by bianisotropic constitutive equations.

Here we advance an idea of another modification of such microstructure config-
urations which can be better suited for use in plane non-reflecting coverings and
antenna radomes.

We focus the analysis on plane screens which are designed to interact with lin-
early polarized electromagnetic waves and suggest a modification which can provide

uniform operation for linearly polarized waves with any electric field direction (or for
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unpolarized plane waves). This can be achieved by introducing a second ensemble of
§2- particles inside the matrix. As a result, the structure will interact more effectively
with linearly polarized waves of any polarization direction or with unpolarized plane
waves. Such a medium can be named as uniaxial omega-medium, because there ex-
ists only one particular direction - that one normal to the interfaces of a layer. The
size of (J-shaped elements is assumed to be smaller than the wavelength, hence the
medium can be described by effective averaged material parameters and the mate-
rial is modelled by uniaxial bianisotropic constitutive relations which couple electric
and magnetic fields.

In the report we develop general theory of plane wave propagation in novel media
and study reflection and transmission in plane uniaxial bianisotropic layered struc-
tures. As an example interesting for applications, we consider in detail reflection
from a plane metal surface covered with a lossy layer. The example demonstrates
that with the additional Q2-shaped wire elements absorption can be enhanced in
a wide frequency range. The additional material parameter can help to manage
properties of anti-reflection coatings, in a way similar to the effect provided by the
chirality parameter of biisotropic materials. Another example is the reflection and
transmission through a plane slab. Here it is seen that the material is perspective
for potential use in antenna radomes since a nearly transparent and non-reflecting
covering can be designed. Also, lossy slabs can be designed to serve as non-reflecting
absorbers.

It appears that the input impedance of a lossy layer on an ideally conducting
surface or in free space can be matched with the free-space wave impedance by
tuning the additional coupling parameter. The impedance matching condition is
frequency-independent (provided the material parameter values can be assumed to
be constants) and that suggests superwide frequency band for prospective anti-
reflection coverings and antenna radomes.

Designing the material, one can compromise between the coupling parameter
value, the losses and the slab thickness. If the impedances match, the thickness
is essential for transmission properties, but not for the reflection. Comparing with
the requirements known for chiral low- reflection screens, it seems easier to achieve
desired effects with the Q-composites, because in the chiral screens rather high degree

of chirality is required.
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Macroscopic predictions of material
parameters for heterogeneous bi media

Ari H. Sihvola

Helsinki University of Technology, Electromagnetics Laboratory
Otakaari 5 A, 02150 Espoo, Finland

In electromagnetics, we often treat materials as homogeneous, i.e. their material
parameter functions are constants with respect to space. These material parameters
are macroscopic descriptions that cover all polarization and loss phenomena that
take place on the microscopic physical level, and with certain restrictions, these
quantities are sufficient in solving electromagnetic wave problems involving matter.

However, strictly taken, no media are homogeneous, at least as one looks at
them in sufficiently small scale. There are material boundaries, grain walls, etc.
Media are random. Especially, as one tries to “see” (and seeing is measuring the
reflection or emission of electromagnetic waves) how the medium looks like, using
a wavelength equal to the correlation length of the spatial permittivity function of
the medium, the scenery is kaleidoscopic: the wave behaves totally differently than
in a homogeneous medium; it does not Propagate along straight lines as the optical
wave in air but it scatters strongly, it is reflected and refracted.

The macroscopic properties of dielectrically heterogeneous media have been a
research topic for physicists for over a century, and studies have resulted in a wealth
of mixing theories. But how about the special guests of this Workshop: “exotic”
materials, chiral and bi-isotropic media?

Compared to classical dielectric or magnetic materials, it is intuitively clearer
that chiral media are heterogeneous. The concept of chirality is so much connected
with geometry, the handedness that is present at some scale within the microstruc-
ture of the material, that the first thought as one sees a sample of chiral material
is to try to find the helical elements responsible for the chirality. An inevitable
consequence of the geometric structure is dielectric inhomogeneity in the medium.

Much effort in the chiroelectromagnetic research of these years is being expended
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on the electromagnetic modelling of a canonical chiral structure, the metal helix.
There are studies of what kind of current distribution will be induced on the helix
as a plane wave is incident upon it. This is not an easy problem.

In the present talk, however, I will not consider the emergence of chirality through
geometry. Rather, in a way of “analytically continuing” the classical dielectric mix-
ture rules and equations, I shall discuss how, given the chirality parameters® of the
constituents of the mixture, to predict the macroscopic chirality (and also permit-
tivity and permeability) of the whole. In other words, in the mixture under study
there are inclusions that are assumed to be of homogeneous bi-isotropic material,
and these determine the larger-scale parameters.

In this analysis, the starting point is to find the polarizabilities of simple-shaped
bi-isotropic particles. Due to the magnetoelectric coupling in the complex medium,
a four-element polarizability matrix, including cross-polarizability terms, is needed.
After knowing this, the classical Maxwell-Garnett and other mixing rules can be
generalized to cover bi-isotropic media. In appearance, these expand and inflate in
this process, and the formulas become coupled: for example, the permittivity of one
inclusion affects the nonreciprocity, chirality, and permeability of the mixture.

The results shown in the presentation are collected from my studies on bi-
isotropic mixtures, and many illustrations have been published before. Most results
can be found in the references [1, 2, 3, 4, 5].

Some general conclusions— The salient features of the mixing process can be
seen already from the simplest two-component mixture: bi-isotropic spheres embed-
ded in isotropic background medium. The coupling of all parameters was already
mentioned: one macroscopic parameter is a function of all six material parameter
quantities of the problem. Secondly, there exist wonderful dualities in the macro-
scopic material formula expressions. For example, the way the permeability of the
inclusion affects the effective permeability, chirality, nonreciprocity, and permit-
tivity, is the same as the way the permittivity of the inclusion affects the effec-
tive permittivity, chirality, nonreciprocity, and permeability. Also, the functional
dependence of the macroscopic permittivity? on the inclusion chirality is exactly
the same as on the inclusion nonreciprocity. Put into a more nonredundant form:
€m(€is fis Kiy Xi3 €hy in) = €m (€, fiy Xiy Ki} €1, pin ). Further; the macroscopic chirality

depends on inclusion nonreciprocity identically with macroscopic nonreciprocity de-

'and also nonreciprocity (fully bi-isotropic) parameters
?The same applies for the macroscopic permeability.
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pendence on inclusion chirality.

An essential observation is the fact that the effective (=macroscopic) permit-
tivity and permeability of a mixture are even functions of both the chirality and
nonreciprocity of the component material. Hence, firstly, the sign of handedness,
i.e. whether left or right handed, should not have effect on these parameters, and
they are true scalars, invariant of spatial inversion. This is obvious: samples of
media that are mirror images of one another should have the same permittivity and
the same permeability. But such is also the dependence on the sign of the inclusion
noreciprocity parameter, although the intuitive support for this is not as evident.
Also the effective chirality is an odd function of the chirality of the inclusion mate-
rial (and a pseudoscalar): changing the handedness of the component changes the
handedness of the mixture. (And again, a similar conclusion holds for the effective
nonreciprocity.)

Furthermore, due to the fact that these functional dependences are even, per-
turbation expansions start with the second-power term, and therefore the effect for
small chiralities (and nonreciprocities) is small. In other words, the chirality of the
inclusion phase has little effect on the macroscopic permittivity and permeability,
at least for high permittivity and permeability contrasts between the inclusion and
background phases. On the other hand, naturally the chirality of the inclusion is
the dominant parameter defining the effective chirality of the mixture. Finally, the
effective chirality of a mixture is decreased by high permittivity and/or permeability
of the inclusion phase.

How, then, about inclusions of other shapes? The only other forms of inclusions
whose polarizabilities can be solved in closed form are ellipsoids. By using chiral in-
clusions of ellipsoidal shapes, a further range of mixture parameters can be tailored.
The effects vary: by using needle-shaped or disk-shaped inclusions, larger effective
parameters can be achieved, although the shape-effect depends on the dielectric and
magnetic contrast between the inclusion and host phases. One observation is, how-
ever, always valid: spherical inclusions produce minimum effects in the macroscopic
properties, and each deviation from this extremum shape always increases the value

achieved by the spherical geometry.
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Covariant methods in the theory of
electromagnetic waves

Fedor I. Fedorov

Belorussian Academy of Sciences, Institute of Physics
Skaryna Str. 70, 220602 Minsk, Byelarus

This presentation focused on the history and present state of crystal optics, start-
ing from the basic works of Pockels (1906), Drude (1912}, and Born (1932). The
different crystal types were classified according to the symmetry and other proper-
ties of the corresponding polarizability matrices. Optical activity and gyrotropy in
crystals has received considerable attention starting from late 1950’s in Belorussia
and the former Soviet Union in general. The talk discussed in detail the histori-
cal development of the constitutive relations of optically active media, as the early
suggestions by Drude and Born were shown to be inconsistent with the energy con-
servation principle. The material equations in the final form are nowadays labeled
often Drude-Born-Fedorov-relations in the Western literature. Special emphasis in
the talk was given to the coordinate-free covariant representation of quantities that
appear in the electromagnetic analysis of anisotropic and bianisotropic media.

(from the notebook of the Workshop organizer)
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PARTICULAR WAVES IN
BI-ISOTROPIC MEDIA

L V. SEMCHENKO

Investigation of the possibility of existence and features of propagation of particular
waves (longitudinal and helicoidal) in the magneto-active plasma and metals in the magnetic
field are reported in [1,2]. It is demonstrated [3] that similar waves can also exist in natural
gyrotropic media within certain frequency ranges close to the absorption band. The present
paper results from the study of propagation and excitation of the particular waves in bi-
isotropic media having optical properties describable with the help of phenomenological
material equations [4-7].

D=eE+(x+ia)H (1)
B=pH+(#-ia)E

Here ¢, p and « are tensors of permittivity, magnetic permeability and natural optical
activity, x is the tensor describing the medium optical non-reciprocal, the sign "tilde" (~)
designates transposition. Since properties of a medium in material equations (1) are
characterized by the tensors ¢, u, «, x they are applicable to describe the optical behaviour
of anisotropic optically active non-mutual media.

From Maxwell’s equations for flat waves [4]
*H=-D, )
D=

m*E=B,
7 0

m I§=0,

3

and material equations (1) the wave equation for the electric field in the bi-isotropic medium
follows as

s -m?+2iam *+ep-x2-o? E=0

and its solution are right-handed and left-handed circular polarized waves with the refraction
index

n =Jjep-x’za 3)

Here m=nnis the refraction vector, T is a unit vector specifying the direction of propagation
of waves, "is an antisymmetric tensor dual to the vector m, the point between the vectors
indicates their direct (double) product.

The permittivity within field frequencies close to the medium absorption bands may approach

zero making it possible for particular waves in bi-isotropic media to exist. When the
relationship
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ep=x?, @)

is fulfilled, which is true for a certain electromagnetic field frequency w; due to the
frequency dispersion of the medium parameters, it follows from formula (3) that n, = a,

n = - «. In this case only a single circularly polarized wave with the refraction index
n = |«| can propagate in the bi-isotropic medium:
L &)
azib

= ., Wy N
E =& ——expli(—|a|i r-w )]
5 ¢

Here 3 and b are single vectors forming the right trio with the vector of the wave normal
and the circular polarization sign corresponds to the parametric sign « at the frequency ;.
From equations (1) and (2) the magnetic field intensity vector H is expressed as

=L E-(x-ia) B
B

Using it and relationship (4) for wave (5) it is obtained

., 1 = £ =
H=-—xE=-1—E_,
. B [
B =-iaE_,
D =-ia | & E:

7]

So, for the above wave it is obtained that H= 0, still Umov-Pointing’s vector transforms into
zero and the wave does not convey energy. Identical, the so-called spiral, waves can appear
also in the magneto-active plasma [1], yet they can propagate only in the direction of an
external magnetic field. Now consider the condition

\/ep.—x2=a R (6)
which can occur within a certain frequency w, of the electromagnetic field close to the

medium absorption band. When relationship (6) is fulfilled refraction indexes (3) acquire the
form

7
n(w)=2{a(w,)|, ™
n_(m2)=0 . (8)

A circularly polarized electromagnetic wave corresponds to refraction index (7), it is
characterized by the following vectors
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E_Z,aiif;

2w, .
expli(—= | |7 - w,t)]
c
. 1. 4
H=-—(x+ia)E,
i
D=-2% i) E,
n

B=-2ioE
where the circular polarization sign is determined by the optical activity parameter sign
o(wy).

A wave with arbitrary elipticity y corresponds to the zero refraction index

F-z (7:tiY5e—iwzz

which has an infinite phase velocity and is independent of coordinates. The energy flux
density vector of the wave averaged in time has the form

<§> :_Lﬁﬁ
41 (1+y?)

Longitudinal waves of the plasma type can also exist within the frequency w, for which
condition (6) is fulfilled:

E=Z‘ﬁexp[i(K”ﬁF—m2t)]

o,
1]
(o]
I
o

©)
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f--Lx-ia)E,
n

The wave number K|, of the longitudinal waves can be determined by considering the
second-order three-dimensional dispersion taking into account that the permittivity tensor
depends upon the wave number [1]:

£ (0,6) =£4 () +1,(©)E* +(v,(0) - ¥, (@)K & (10)

Then the wave equation of the electrical field intensity has the following form:

{egp-x2-a-(1-Bop) A2 +[1+(B, - Byl - +2iam*} E=0 , (11)
where the following designations are used:
w? w?
B Yo B =Yi1——= -
0~ To” 3 17 5

From wave equation (11) a condition of the electrical field longitudinal component follows

(ﬂol—l‘xz‘a2+plun2) EH =0,

from which the longitudinal wave number is derived

K@ a?+x?-gop (12)

ey By
In response to the parameter sign 3, the non-attenuating longitudinal waves can exist either
within the frequency range in which

a?+x2> e (ot B,>0)

or within the frequency range in which

al+x?<egp (ot B, <0)

Since the energy flux density vector of waves with refraction indexes (7) and (8) differs from
zero these waves can be excited by an electromagnetic wave incident upon a bi-isotropic
medium from outside. One of mechanisms exciting a longitudinal wave (9) can be the effect
of Vavilov-Cherenkov which is discussed below. For this purpose the wave equation of the
electromagnetic field with the source in the bi-isotropic medium is written as:
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ep—xz—azi_gﬁi rorl B - 4T 8 =
c? at2 ¢ ot c?

{rotrot +

When second-order three dimensional dispersion (10) is taken into account the wave equation
acquires the form

&

{[1-_Y1—_-Y.Ouﬁ]v.v_(pﬁp_)vh (13)
c? ar? c? &
2.2 .
I A T RN
c? ot? ¢ ot c? ot

Where V is a symbolic vector differential operator. In order to take into account the
frequency dispersion of the medium propercties the parameters &, p ,X, a,v, v,  should
be treated as differential argument i— - dependent operators. By writing down the
current density for a pin-pointed ,at

charge e moving with a constant velocity ¥

J=ev8(F-vr) ,

non-homogeneous equation (13) is solved for the Fourier-component of the longitudinal field:

Fo_ dnpeik ik (7-vt)

1

k(e —x? - ol +y, pk?)

Also,the solution of equation (13) with the zero right term should be taken into account
Ey = By Fei®ron

Now a full solution of equation (13)

1
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satisfying the original condition

EF =0,
at t=0 acquires the form
. . (14)
EG.1) - 4npeik 1 -e ikV-0) eilEF-on
K2 egp-x?-aley pk?

where all the parameters characterizing a medium are functions of the argumentW
When the conditions

goh-x2-a’+y pk?=0, kv =w (15)

are fulfilled field amplitude (14) increases in time linearly:

_ 4mpeikt ¢ iEF-01)
de (w)
ow

E@F,t) =

[}

ku

It has been assumed that magnitudes x?,> and ,k*> are less frequency-dependent than &,.
From relationships (12), (15) it follows that the Cherenkov emission of longitudinal waves

is possible providing

YiH
Vew | —mm —,

2
at+x-g,p

i.e., when the velocity of an electron exceeds the phase velocity of longitudinal waves in a
bi-isotropic medium.
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