Лабораторная работа № 7 Предел функции

Необходимые понятия и теоремы: различные определения предела функции, общие свойства предела функции, предел и неравенства, предел и арифметические операции, предел композиции, критерий Коши существования предела, односторонние пределы, бесконечные пределы, частичные пределы.

1 Для функции $y=f(x),\ x\in D$ f , заданных a , A и $\varepsilon=\varepsilon_t$ найти такое δ , чтобы для любых $x\in D$ f , удовлетворяющих условию $0<|x-a|<\delta$, выполнялось неравенство $|f(x)-A|<\delta$

$N_{\overline{0}}$	f(x)	D f	а	A	\mathcal{E}_1	${\cal E}_2$
1	2	3	4	5	6	7
1.1	2x+1	\mathbb{R}	0	1	0,1	0,001
1.2	x^2	\mathbb{R}	1		0,01	0,001
1.3	$2x^2 - 1$	\mathbb{R}	1	1	0,1	0,002
1.4	$\sin x$	$\left(0,\frac{\pi}{2}\right)$	$\frac{\pi}{2}$	1	0,01	0,001
1.5	$\cos x$	$(0,\pi)$	0	1	0,1	0,01
1.6	$\frac{1}{x}$	(0, 2)	1	1	0,01	0,001
1.7	$\frac{x^2-9}{x-3}$	(3,10]	3	6	0,1	0,001
1.8	$\frac{x-1}{x+1}$	(-1, 1)	0	-1	0,02	0,002
1.9	$3x^2 - 2$	\mathbb{R}	1	1	0,3	0,003
1.10	x^3	\mathbb{R}	1	1	0,1	0,01
1.11	3x+1	\mathbb{R}	0	1	0,2	0,01
1.12	$x^2 - 1$	\mathbb{R}	1	0	1	0,001

1	2	3	4	5	6	7
1.13	$\sin 2x$	$\left(0,\frac{\pi}{2}\right)$	$\frac{\pi}{4}$	1	0,01	0,001
1.14	$\cos 2x$	$(0,\pi)$	$\frac{\pi}{2}$	-1	0,1	0,002
1.15	$\frac{1}{3}x^2 + 1$	\mathbb{R}	3	4	1	0,0001
1.16	100x + 1	\mathbb{R}	0	1	0,1	0,001
1.17	$\frac{x^2}{100} + 1$	(0,1)	0	1	0,1	0,01
1.18	1000 <i>x</i>	\mathbb{R}	0	0	0,1	0,001
1.19	$\frac{x^2 - 1}{x - 1}$	(1, 5]	1	2	0,2	0,01
1.20	$\frac{x^3 - 1}{x - 1}$	(1, 4)	1	3	0,1	0,001

2 Пользуясь определением предела по Коши (на «языке $\varepsilon - \delta$ »), доказать, что $\lim_{x \to a} f(x) = A$.

No	f(x)	D f	а	A
1	2	3	4	5
2.1	x^2	\mathbb{R}	3	9
2.2	2x+1	(1, 2)	1	3
2.3	3x	(1, 4)	2	6
2.4	$\sin x$	\mathbb{R}	$\frac{\pi}{2}$	1
2.5	$\cos x$	$(0,\pi)$	π	-1
2.6	$\frac{x^2-1}{x+1}$	(-1, 1)	-1	-2
2.7	$x^2 - 1$	\mathbb{R}	0	-1
2.8	x^3	\mathbb{R}	1	1

1	2	3	4	5
2.9	$\frac{x^2}{100} - 1$	(0, 2)	0	-1
2.10	100x + 1	\mathbb{R}	0	1
2.11	3x+1	(-1, 5)	5	16
2.12	$\frac{x}{100} + 100$	\mathbb{R}	100	100
2.13	$100x^2 - 100$	(1, 4)	1	0
2.14	$\sin 2x$	$(0,\pi)$	$\frac{\pi}{4}$	1
2.15	$\cos 2x$	$\left(\frac{\pi}{4},\pi\right)$	$\frac{\pi}{4}$	0
2.16	$\frac{x^2-1}{x-1}$	(1, 2)	1	2
2.17	$ \begin{array}{r} \hline x-1 \\ \hline x^3-1 \\ \hline x-1 \end{array} $	(1, 3)	1	3
2.18	$4x^2 - 1$	\mathbb{R}	1	3
2.19	$\frac{1}{x}$	$(0, +\infty)$	1	1
2.20	$3x^2 - 1$	\mathbb{R}	1	2

3 Используя определение предела функции по Гейне (на языке последовательностей), доказать, что не существует предела $\lim_{x\to a} f(x)$.

$N_{\underline{0}}$	f(x)	а	№	f(x)	a
1	2	3	4	5	6
3.1	$\begin{cases} 2x, x \le 1 \\ x, x > 1 \end{cases}$	1	3.10	ctg x	∞
3.2	sin x	+8	3.11	sign x	0
3.3	$\cos x$	+8	3.12	$\sin \frac{1}{x}$	0
3.4	$ \begin{cases} 2x, x \le 1 \\ 2 - x, x > 1 \end{cases} $	1	3.13	$\begin{cases} x^2 + 2, x \le 0 \\ x + 1, x > 0 \end{cases}$	0

1	2	3	4	5	6
3.5	$\begin{cases} x^2, x < 0 \\ x + 2, x \ge 0 \end{cases}$	0	3.14	$\begin{cases} 2x, x < 0 \\ 2x^2 + 1, x \ge 0 \end{cases}$	0
3.6	$\begin{cases} -x+1, x \le 2\\ x+1, x > 2 \end{cases}$	2	3.15	$\frac{ x }{x}$	0
3.7	$\begin{cases} x^2, x \le 0 \\ x+1, x > 0 \end{cases}$	0	3.16	$\frac{x-1}{ x-1 }$	1
3.8	$\begin{cases} -x+1, x \le 0 \\ 2+x, x > 0 \end{cases}$	0	3.17	$\cos\frac{1}{x}$	0
3.9	$\begin{cases} -2, x < 1 \\ x + 2, x \ge 1 \end{cases}$	1	3.18	$\sin \frac{1}{x-1}$	1

4 Используя логические символы (на языке « $\varepsilon - \delta$ ») сформулировать утверждение $\lim_{x \to x_0} f(x) = A$ и привести соответствующие примеры.

No	x_0	\boldsymbol{A}	$N_{\overline{0}}$	x_0	A	N_{Ω}	x_0	A	№	x_0	A
4.1	∞	b	4.6	а	∞	4.11	a+0	$-\infty$	4.16	+∞	$-\infty$
4.2	$-\infty$	b	4.7	a-0	+8	4.12	a+0	$+\infty$	4.17	+∞	+8
4.3	$+\infty$	b	4.8	a-0	$-\infty$	4.13	$-\infty$	$-\infty$	4.18	+∞	8
4.4	а	+∞	4.9	a-0	8	4.14	$-\infty$	$+\infty$	4.19	a-0	b
4.5	а	$-\infty$	4.10	<i>a</i> +0	8	4.15	$-\infty$	∞	4.20	<i>a</i> +0	b

5 Найти односторонние пределы $\lim_{x \to a \pm 0} f(x)$ или показать, что эти пределы не существуют. Если существует $\lim_{x \to a} f(x)$, найти его.

No	f(x)	а	№	f(x)	а
1	2	3	4	5	6
5.1	$\sin\frac{1}{x}$	0	5.10	$\begin{cases} \sin x, x < 0 \\ \cos x, x \ge 0 \end{cases}$	0
5.2	$\cos\frac{1}{x}$	0	5.11	tg x	$\frac{\pi}{2}$

1	2	3	4	5	6
5.3	$ \begin{cases} 1, x \le 0 \\ -1, x > 0 \end{cases} $	0	5.12	ctg x	π
5.4	$\begin{cases} 2x^2, x \le 1\\ 1-x, x > 1 \end{cases}$	1	5.13	$\frac{x}{ x }$	0
5.5	$e^{\frac{1}{x}}$	0	5.14	$\sin^2\frac{1}{x}$	0
5.6	$\sin \frac{1}{x-1}$	1	5.15	$\begin{cases} x^2, x \le 1 \\ 2x - 1, x > 1 \end{cases}$	1
5.7	$\frac{ x-2 }{x-2}$	2	5.16	$\begin{cases} x^2, x \le 1 \\ 2x+1, x > 1 \end{cases}$	1
5.8	x	0	5.17	<i>X</i> *\	1
5.9	$\begin{cases} x+1, & x \le 1 \\ 1-x, & x > 1 \end{cases}$	1	5.18	$\sin\frac{1}{ x-2 }$	2

 $^{^{*}}$ x – целая часть x.

6 Пользуясь определение предела по Коши, доказать, что число A не является $\lim_{x \to a} f(x)$.

№	f(x)	D f	а	A
1	2	3	4	5
6.1	$x^{2}-1$	(0, 1)	1	1
6.2	$3x^2 - 1$	\mathbb{R}	0	2
6.3	$\frac{x^2 - 1}{x + 1}$	(-1, 1)	-1	1
6.4	$\frac{x^2-1}{x-1}$	\mathbb{R}	1	0
6.5	$\frac{x}{100} - 1$	\mathbb{R}	0	4
6.6	$x^3 - x$	(0,10)	1	1

1	2	3	4	5
6.7	$\frac{ x }{x} - x$	(-1, 0)	0	2
6.8	100x + 1	\mathbb{R}	0	-1
6.9	2 x -1	(-1,1)	1	0
6.10	$\frac{x^3-1}{x-1}$	(1, 10)	1	2
6.11	2x-1	(0,1)	0	2
6.12	$x^{3} + 1$	(0, 2)	0	2
6.13	$100x^2 - 100$	\mathbb{R}	1	1
6.14	$\frac{1}{x}$	(0,10]	1	4
6.15	$ x \cdot x$	(0, 4)	1	3
6.16	$\frac{ x }{x} + x$	(0, 1)	0	2
6.17	$\sin x $	(0, 1)	0	1
6.18	$\frac{x^2}{100} + x$	\mathbb{R}	10	1
6.19	$-x^2+1$	\mathbb{R}	0	2
6.20	$\frac{1}{x} + x$	(1, 3)	1	0

7 Если для некоторой последовательности $x_n \to a$ $x_n \neq a$ имеет место равенство $\lim_{n \to \infty} f(x_n) = A$, то число (или символ ∞) A называют частичным пределом функции f(x) в точке a. Наименьший и наибольший из этих частичных пределов обозначают $\lim_{x \to a} f(x)$ и $\lim_{x \to a} f(x)$ и называют соответственно нижним и верхним пределами f(x) в точке a. Найти $\lim_{x \to a} f(x)$ и $\lim_{x \to a} f(x)$.

No	f(x)	D f	а	No	f(x)	D f	a
7.1	$\sin \frac{1}{x}$	(0, 1)	0	7.10	$\sin^2 x$	\mathbb{R}	$-\infty$
7.2	$\sin^2\frac{1}{x}$	(0, 1)	0	7.11	$\sin^2\frac{1}{ x }$	$\mathbb{R}\setminus\{0\}$	0
7.3	$x\cos\frac{1}{x}$	$\mathbb{R}\setminus\{0\}$	0	7.12	$\cos^2\frac{1}{ x }$	(0, 2)	0
7.4	$\cos^2\frac{1}{x}$	$(1, +\infty)$	0	7.13	$\sin \frac{1}{x-1}$	(1, 3)	1
7.5	$x\sin\frac{1}{x}$	(0, 1)	0	7.14	$\cos \frac{1}{x-1}$	(-1,1)	1
7.6	$x^2 \cos \frac{1}{x-1}$	(1, 2)	1	7.15	$x\cos\frac{1}{x-2}$	$\mathbb{R}\setminus\{2\}$	2
7.7	sin x	\mathbb{R}	+∞	7.16	$\frac{x}{1+x^2\sin^2 x}$	\mathbb{R}	+∞
7.8	$2^{\sin x^2}$	\mathbb{R}	+8	7.17	$2^{\sin\frac{1}{x}}$	ℝ \{0}	0
7.9	$x^2\cos^2 x$	\mathbb{R}	+∞	7.18	$2^{\cos\frac{1}{x-1}}$	$(1, +\infty)$	1

Решение типовых примеров

1.20. Для функции $f(x) = \frac{x^3 - 1}{x - 1}$, $x \in (1, 4)$, a = 1, A = 3 и $\varepsilon_1 = 0, 1$, $\varepsilon_2 = 0,001$ найти δ , чтобы для любых $x \in (1, 4)$, удовлетворяющих условию $0 < |x - a| < \delta$, выполнялось неравенство $|f(x) - A| < \delta$.

$$Peшение$$
. Так как $f(x) = \frac{x^3 - 1}{x - 1}$, $x \in (1, 4)$, $a = 1$, $A = 3$, то

$$|f(x) - A| = \left| \frac{x^3 - 1}{x - 1} - 3 \right| = \left| x^2 + x + 1 - 3 \right| \le$$

$$\leq |(x-1)(x+1)| + |x-1| = |x-1| \cdot (|x+1|+1).$$

Будем искать нужное δ среди $\delta: \delta \le 1$. Для $x \in (1,4)$, удовлетворяющих неравенству $0 < |x-1| \le \delta \le 1$, имеем $0 < x \le 2$ и $|x+1| + 1 \le 4$. Поэтому $|f(x) - A| < 4\delta$.

Теперь если $\varepsilon=\varepsilon_1=0.1$, то для него δ найдем из равенства $4\delta=0.1$, т.е. $\delta_1=\frac{1}{40}$. Если же $\varepsilon=\varepsilon_2=0.001$, то полагаем $4\delta=0.001$, т.е. $\delta_2=\frac{1}{4000}$. Заметим, что найденные $\delta_i\leq 1$.

2.20. Пользуясь определением предела по Коши (на «языке $\varepsilon-\delta$ »), доказать, что $\lim_{x\to a} f(x) = A$.

Решение. Так как $f(x) = 3x^2 - 1$, $x \in \mathbb{R}$, a = 1, A = 2, то

$$|f(x) - A| = |3x^2 - 3| = 3|x - 1| \cdot |x + 1|.$$

Возьмем $\forall \varepsilon > 0$ и будем искать нужное δ среди $\delta : \delta \le 1$. Тогда $0 < |x-1| < \delta \le 1 \implies 0 < x \le 2$. Поэтому $3|x+1| \le 9$ и

$$|f(x)-A|<9\delta$$
.

Тогда, если $9\delta = \varepsilon$, то $|f(x) - A| < \varepsilon$ для всех $x \in D(f)$ и $0 < |x - 1| < \delta$. Поэтому, положив $\delta = \min\left\{1, \frac{\varepsilon}{9}\right\}$, будем иметь, что $\forall \varepsilon > 0$ при $\delta = \min\left\{1, \frac{\varepsilon}{9}\right\}$ для $\forall x \in D(f)$ и $0 < |x - 1| < \delta$ справедливо неравенство

$$|f(x)-2|<\varepsilon$$
.

Итак, показано, что $\lim_{x\to 1} (3x^2 - 1) = 2$.

3.18. Используя определение предела функции по Гейне (на языке последовательностей), доказать, что не существует предела $\lim_{x\to a} f(x)$, если

$$f(x) = \sin \frac{1}{x-1}, \ a = 1.$$

Решение. Для последовательности

$$x'_n = 1 + \frac{1}{n\pi} \to 1, \ f(x'_n) = \sin n\pi \to 0.$$

С другой стороны,

$$x_n'' = 1 + \frac{1}{\frac{\pi}{2} + 2n\pi} \to 1$$
, a $f(x_n'') = \sin(\frac{\pi}{2} + 2n\pi) \to 1$.

Из определения предела по Гейне следует, что предел $\limsup_{x\to 1} \frac{1}{x-1}$ не существует.

4.20. Используя логические символы (на языке « $\varepsilon - \delta$ ») сформулировать утверждение $\lim_{x \to x_0} f(x) = A$ и привести соответствующие примеры, если $x_0 = a + 0$, A = b.

P е w

$$\Pi p u m e p$$
: $f(x) = \frac{|x|}{x}$, $a = 0$, $b = 1$ $\lim_{x \to 0+0} \frac{|x|}{x} = \lim_{x \to 0+0} \frac{x}{x} = 1$.

5.18. Найти односторонние пределы $\lim_{x \to a \pm 0} f(x)$, где $f(x) = \sin \frac{1}{|x-2|}$, a=2, или показать, что эти пределы не существуют. Если существует $\lim_{x \to a} f(x)$, найти его.

Peшение. Покажем, что не существует $\lim_{x\to 2+0} \sin\frac{1}{|x-2|}$. Для доказательства воспользуемся определением предела по Гейне: при $n\to\infty$

$$x'_n = 2 + \frac{1}{\frac{\pi}{2} + 2n\pi} \to 2 + 0, \quad f \ x'_n = \sin\frac{\pi}{2} \to 1;$$

$$x''_n = 2 + \frac{1}{n\pi} \to 2 + 0, \qquad f \ x''_n = \sin n\pi \to 0.$$

Итак, показано, что не существует $\lim_{x\to 2+0} \sin\frac{1}{|x-2|}$. Аналогично показано, что не существует $\lim_{x\to 2-0} \sin\frac{1}{|x-2|}$. Таким образом, показано, что не существует $\lim_{x\to 2} \sin\frac{1}{|x-2|}$.

6.20 Пользуясь определение предела по Коши, доказать, что число A не является $\lim_{x\to a} f(x)$, если $f(x) = \frac{1}{x} + x$, $x \in (1,3)$, a = 1, A = 0.

Pewehue. Нужно показать, что $\exists \varepsilon > 0$ такое, что $\forall \delta > 0$ $\exists x' \in D(f)$, удовлетворяющее условию $0 < |x' - 1| < \delta$, для которого $|f(x') - 0| \ge \varepsilon$. Возьмем $\varepsilon = 1$. Для любого $0 < \delta < 1$ положим $x' = 1 + \frac{\delta}{2}$. Тогда $x' \in (1,3)$

$$0 < |x'-1| = \frac{\delta}{2} < \delta$$
 и $|f(x')-0| = 1 + \frac{\delta}{2} + \frac{1}{1+\frac{\delta}{2}} \ge 1 = \varepsilon$.

Нужное утверждение доказано.

7.18 Найти $\varliminf_{x \to a} f(x)$ и $\varlimsup_{x \to a} f(x)$, если $f(x) = 2^{\cos \frac{1}{x-1}}$, $x \in 1, +\infty$, a = 1.

Peшение. Так как $-1 \le \cos t \le 1$, то $\frac{1}{2} \le f(x) \le 2$. Поэтому если A — частичный предел f(x) в точке a = 1, то $\frac{1}{2} \le A \le 2$. С другой стороны, имеем: при $n \to \infty$

$$x'_n = 1 + \frac{1}{\pi + 2n\pi} \to 1$$
, a $f x'_n = 2^{\cos \pi} = \frac{1}{2} \to \frac{1}{2}$;
 $x''_n = 1 + \frac{1}{\frac{\pi}{2} + 2n\pi} \to 1$, a $f x''_n = 2^{\cos \frac{\pi}{2}} = 2 \to 2$.

Следовательно, $\underline{\lim}_{x\to a} f(x) = \frac{1}{2}$, а $\overline{\lim}_{x\to a} f(x) = 2$.