Лабораторная работа № 12

Производная и дифференциал функции: определения, геометрический смысл, физический смысл

Необходимые понятия и теоремы: дифференцируемость и дифференциал функции в точке, производная функции в точке, теорема о равносильности дифференцируемости и существования производной, теорема о дифференцируемости и непрерывности, касательная к графику функции, мгновенная скорость.

Литература: [1] c. 202 – 214, [2] c. – .

1 Повторите определение дифференцируемости функции в точке. Докажите непосредственно по определению, что функция f(x) дифференцируема в точке x_0 . Запишите дифференциал функции в виде df = kh:

№	f(x)	x_0	№	f(x)	x_0
1.1	$-x^2 - 2x + 4$	1	1.11	$-3x^3 - x^2 - 2x + 4$	1
1.2	$-x^2 + 12x - 4$	3	1.12	$3x^3 - x^2 + 12x - 4$	3
1.3	$-3x^2 + 5x - 1$	2	1.13	$x^3 - 3x^2 + 5x - 1$	2
1.4	$4x^2 + 5x + 1$	-1	1.14	$2x^3 - 4x^2 + 5x + 1$	-1
1.5	$3x^2 + 2x - 3$	-3	1.15	$x^3 + 3x^2 + 2x - 3$	-3
1.6	$2x^2 - 3x + 4$	-2	1.16	$-3x^3 + 2x^2 - 3x + 4$	-2
1.7	$2x^2 - 4x + 3$	1	1.17	$-x^3 + 2x^2 - 3x + 4$	1
1.8	$3x^2 + 4x - 1$	3	1.18	$2x^3 + 3x^2 + 4x - 1$	3
1.9	$-3x^2 + 5x + 4$	2	1.19	$-x^3 - 3x^2 + 5x + 4$	2
1.10	$3x^2 + 5x - 4$	-1	1.20	$2x^3 - 3x^2 + 5x - 4$	-1

2 Для функции f(x) и точки x_0 из задания **1** найдите производную $f'(x_0)$ непосредственно по определению. Обратите внимание, что представление приращения функции $\Delta f = f(x_0 + h) - f(x_0)$ в виде $\Delta f = kh + o(h)$, полученное в предыдущем задании, облегчает вычисление

производной (то есть вычисление предела
$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$$
).

Повторите теорему о равносильности дифференцируемости функции в точке и существования конечной производной в этой точке. Запишите определение дифференцируемости и определение производной, используя символы Δx вместо h.

3 Для функции f(x), точки x_0 и значений Δx , равных 1; -1; 0,5; -0,5; 0,1; -0,1; 0,05; -0,05; 0,01; -0,01; 0,005; -0,005; 0, 001; -0, 001, вычислите, используя EXCEL, приращение функции $\Delta f = f(x_0 + \Delta x) - f(x_0)$ и отношение $\frac{\Delta f}{\Delta x}$. Какое предположение можно сделать на основе полученных результатов о величине $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$? О производной $f'(x_0)$? О дифференциале df в точке x_0 ?

No	f(x)	x_0	№	f(x)	x_0
3.1	tg 2x	0	3.11	tgx	0
3.2	$\frac{3^x}{\ln 3}$	1	3.12	$\cos x$	$\frac{\pi}{6}$
3.3	$\sin x$	$\frac{\pi}{3}$	3.13	$\ln x$	1
3.4	ln(x+1)	1	3.14	ln 2x	4
3.5	$\cos x$	0	3.15	tg3x	0
3.6	$\sin^2 x$	0	3.16	e^{x+1}	0
3.7	$ln(x^2+1)$	-1	3.17	$\sin x^2$	0
3.8	xe^x	0	3.18	$\cos x^2$	0
3.9	e^x	0	3.19	$\cos^2 x$	0
3.10	$\frac{2^x}{\ln 2}$	1	3.20	$\sin 5x$	0

4 Используя EXCEL и разбивая отрезок 0;4 на 1000 частей точками 0; 0,004; 0,008; 0,016;...;3,996;4

- а) постройте график функции f(x) на 0;4
- б) выберите свободную ячейку для коэффициента k , поместите в неё какое-нибудь число и постройте график функции $y = k(x x_0) + f(x_0)$
- в) изменяя содержимое указанной ячейки (то есть изменяя число k), обратите внимание на изменение положения прямой $y=k(x-x_0)+f(x_0)$, проходящей через точку $(x_0,f(x_0))$
- г) подберите число k так, чтобы получающаяся прямая как можно лучше сливалась с графиком функции f(x) в окрестности точки x_0 .

д) какое предположение можно сделать на основе этого эксперимента о величине производной функции f(x) в точке x_0 и о дифференциале функции f(x) в точке x_0 ?

No	f(x)	x_0	No	f(x)	x_0
4.1	$4\cos\sqrt{\frac{x}{x+2}}$	1	4.11	$3\arccos\frac{x+1}{x+2}$	1
4.2	$\frac{2x+1}{\sqrt{x}+x+1}$	2	4.12	$3^{\sqrt{x^2+1}-3}$	2
4.3	$\pi^{x^2+\sqrt{x}-20}$	1	4.13	$2\ln(1+\sqrt{x}+\sqrt{x+1})$	2
4.4	$2\ln\sqrt{1+\sqrt{x+9}}$	2	4.14	$2\sin((x-1)\sqrt{x+1})$	2
4.5	$\frac{\sin(x+\sqrt{x})}{2+\sqrt{x}}$	2	4.15	$3\arcsin\frac{x}{x+1}$	1
4.6	$(1,5)^{(x+1)\sqrt{x}}$	1	4.16	$\frac{\sqrt{x+\sqrt{x}}}{\sqrt{1+x^2}}$	2
4.7	$2arctg\frac{x+1}{x+2}$	2	4.17	$2^{\sqrt{x+2}}$	2
4.8	$\sqrt{x+1}\ln(x+1)$	2	4.18	$3\ln(1+2\sqrt{x+1})$	1
4.9	$(3x^2+1)\sin x$	1	4.19	$3x\sin(x^2+1)$	1
4.10	$\sin\sqrt{x} \cdot \arcsin\frac{\sqrt{x}}{2}$	1	4.20	$0.1x\sqrt{x^2+1}$	2

5 Пусть тело движется прямолинейно и равноускоренно по закону s=s(t). Используя EXCEL, найти среднюю скорость тела на промежутке с концами t_0 и $t_0+\Delta t$, если Δt равно 1; -1; 0,5; -0,5; 0,1; -0,1; 0,05; -0,05; 0,01; -0,01; 0,005; -0,005; 0,001; -0,001. Найти производную функции s(t) в точке t_0 . Найти мгновенную скорость тела в момент t_0 .

No	s(t)	t_0	No	s(t)	t_0
5.1	$4t^2 + 6t + 6$	10	5.11	$t^2 - 4t - 3$	15
5.2	$8t^2 - 4t + 1$	5	5.12	$3t^2 - 6t + 2$	3
5.3	$2t^2 + 2t + 3$	15	5.13	$5t^2 + 2t - 4$	2
5.4	$16t^2 + t + 1$	3	5.14	$t^2 - 3t + 4$	10

5.5	$6t^2 + 2t + 2$	2	5.15	$6t^2 + 6t - 1$	5
5.6	$5t^2 - 3t + 2$	10	5.16	$3t^2 - 5t + 6$	15
5.7	$5t^2 + 2t + 1$	5	5.17	$5t^2 - 3t + 2$	3
5.8	$6t^2 - 3t + 5$	15	5.18	$6t^2 - t + 5$	2
5.9	$t^2 + 9t - 1$	3	5.19	$t^2 + 8t + 6$	5
5.10	$3t^2 + 6t + 6$	2	5.20	$\frac{9.8t^2}{2} + 0.2 \cdot t$	10

6 Может ли некоторая функция быть дифференцируемой в точке x_0 и не быть непрерывной в этой точке ? Может ли некоторая функция быть непрерывной в точке x_0 и не быть дифференцируемой в этой точке ? Докажите, что функция f(x) непрерывна в точке x_0 и не дифференцируема (не имеет производной) в этой точке:

$N_{\overline{0}}$	f(x)	x_0	№	f(x)	x_0
6.1	$\begin{cases} 1 - 3x, & x < -1 \\ 2x^2 + 2, x \ge -1 \end{cases}$	-1	6.11	$\begin{cases} 3 - 3x, \ x < -1 \\ 2x^2 + 4, x \ge -1 \end{cases}$	-1
6.2	$\begin{cases} x+1, & x \le 0 \\ 1-2x^2, x > 0 \end{cases}$	0	6.12	$\begin{cases} x+2, \ x \le 0 \\ 2-x^2, x > 0 \end{cases}$	0
6.3	$\begin{cases} 12 - 2x, x < 3 \\ x^2 - 3, \ x \ge 3 \end{cases}$	3	6.13	$\begin{cases} 5 - x, \ x < 3 \\ x^2 - 7, x \ge 3 \end{cases}$	3
6.4	$\begin{cases} x+12, \ x \le 2 \\ x^2+10, x > 2 \end{cases}$	2	6.14	$\begin{cases} 2x - 5, x \le 2\\ x^2 - 5, x > 2 \end{cases}$	2
6.5	$\begin{cases} 3x+1, x<1\\ x^2+3, x \ge 1 \end{cases}$	1	6.15	$\begin{cases} 3x - 3, x < 1 \\ x^2 - 1, x \ge 1 \end{cases}$	1
6.6	$\begin{cases} -2 + 4x, x < -1 \\ 5x - x^2, x \ge -1 \end{cases}$	-1	6.16	$\begin{cases} 2-3x, \ x < -1 \\ 2x^2 + 3, x \ge -1 \end{cases}$	-1
6.7	$\begin{cases} x+3, & x \le 0 \\ 3-2x^2, x > 0 \end{cases}$	0	6.17	$\begin{cases} x+2, \ x \le 0 \\ 2-x^2, x > 0 \end{cases}$	0
6.8	$\begin{cases} 11 - x, x < 3 \\ x^2 - 1, x \ge 3 \end{cases}$	3	6.18	$\begin{cases} 11 - x, x < 3 \\ x^2 - 1, x \ge 3 \end{cases}$	3

6.9	$\begin{cases} 3x - 6, x \le 2\\ 4 - x^2, x > 2 \end{cases}$	2	6.19	$\begin{cases} 2x+2, x \le 2\\ x^2+2, x > 2 \end{cases}$	2
6.10	$\begin{cases} 5x + 2, x < 1 \\ 8 - x^2, x \ge 1 \end{cases}$	1	6.20	$\begin{cases} x, \ x < 1 \\ x^2, x \ge 1 \end{cases}$	1

7 Построить график функции f(x). Провести секущую через точки $(x_0; f(x_0))$ и $(x_0 + \Delta x; f(x_0 + \Delta x))$ для значения Δx , равного 1. Построить треугольник с вершинами $(x_0; f(x_0)), (x_0+1; f(x_0)), (x_0+1; f(x_0+1)).$ Найти длины катетов этого треугольника и тангенс угла с вершиной Провести секущую через $(x_0; f(x_0)).$ точки $(x_0; f(x_0))$ $(x_0 + \Delta x; f(x_0 + \Delta x))$ для значений Δx , равных 1; 0,5; 0,1. Провести касательную к графику функции f(x) в точке $(x_0; f(x_0))$. Используя EXCEL, вычислить угловые коэффициенты секущих для значений Δx , равных 1; 0,5; 0,1; 0,05; 0,01; 0,005; 0,001; 0,0005; 0,0001. Найти производную функции f(x)в точке x_0 (производную находить непосредственно определению, вычисляя предел отношения ПО приращения функции к приращению аргумента). Какой геометрический смысл имеет производная?

$N_{\overline{2}}$	f(x)	x_0	№	f(x)	x_0
7.1	sin x	0	7.11	e^x	1
7.2	$\ln x$	1	7.12	\sqrt{x}	4
7.3	$\cos x$	$\frac{\pi}{2}$	7.13	sin x	$\frac{\pi}{3}$
7.4	x^3	1	7.14	$\ln x$	e
7.5	e^x	0	7.15	$\cos x$	$\frac{3\pi}{2}$
7.6	\sqrt{x}	1	7.16	x^3	1,5
7.7	sin x	π	7.17	2^x	0
7.8	$\ln x$	2	7.18	\sqrt{x}	2,25
7.9	$\arccos \frac{x}{2}$	1	7.19	$\arcsin \frac{x}{2}$	1
7.10	x^3	0,5	7.20	$\cos x$	$\frac{\pi}{6}$

8 Найти углы, под которыми график функции f(x) пересекает ось абсписе:

$N_{\underline{0}}$	f(x)	$N_{\underline{0}}$	f(x)
8.1	$x^3 - 2x^2 + 2x$	8.11	$x^3 - 2x^2 - 3x$
8.2	$x^3 - 5x^2 + 4x$	8.12	$x^3 - 3x^2 - 4x$
8.3	$x^3 - 6x^2 + 5x$	8.13	$x^3 - 4x^2 - 5x$
8.4	$x^3 - 5x^2 + 6x$	8.14	$x^3 - 7x^2 + 6x$
8.5	$x^3 - 6x^2 + 8x$	8.15	$x^3 - 8x^2 + 12x$
8.6	$x^3 - 7x^2 + 10x$	8.16	$x^3 - 9x^2 + 18x$
8.7	$x^3 - 7x^2 + 12x$	8.17	$x^3 - 10x^2 + 24x$
8.8	$x^3 + x^2 - 2x$	8.18	$x^3 - 5x^2 - 6x$
8.9	$x^3 - 8x^2 + 15x$	8.19	$x^3 - 11x^2 + 30x$
8.10	$x^3 - x^2 - 2x$	8.20	$x^3 - 4x^2 + 3x$

9 Для функции f(x) задачи 8 найти точки, в которых касательные к графику функции f(x) параллельны оси абсцисс (при вычислении производных использовать правила «производная суммы равна сумме производных», «константу можно выносить за знак производной» и « $(x^n)' = nx^{n-1}$ »). Используя информацию, полученную при решении задач 8 и 9, построить график функции f(x).

10 Найти производные функций со: и sin в произвольной точке x_0 непосредственно по определению производной (см. решение задачи 7.20). Используя полученные формулы и правила вычисления производной суммы, произведения и частного функций, написать уравнение касательной к графику функции f(x) в точке с абсциссой x_0 :

№	f(x)	x_0	№	f(x)	x_0
10.1	$\frac{\sin x + \cos(x + \frac{\pi}{4})}{\cos(x + \frac{\pi}{4})}$	$\frac{\pi}{3}$	10.11	$\frac{\sin x + \cos(x + \frac{\pi}{4})}{1 + \cos 2x}$	$\frac{\pi}{3}$
10.2	$\frac{\sin x + 2\sin 2x}{\cos(x + \frac{\pi}{4})}$	$\frac{\pi}{6}$	10.12	$\frac{\sin x + 2\sin 2x}{1 + \cos 2x}$	$\frac{\pi}{6}$
10.3	$\frac{2\sin x + \cos x}{\sin^2 x}$	$\frac{\pi}{4}$	10.13	$\frac{2\sin x + \cos x}{1 + \cos 2x}$	$\frac{\pi}{4}$

10.4	$\frac{\sin x + \cos(x + \frac{\pi}{4})}{\sin 2x}$	$\frac{\pi}{4}$	10.14	$\frac{\sin x + \cos(x + \frac{\pi}{4})}{1 + \cos 2x}$	$\frac{\pi}{4}$
10.5	$\frac{\sin x + 2\sin 2x}{\cos^2 x}$	0	10.15	$\frac{\sin x + 2\sin 2x}{1 + \cos 2x}$	0
10.6	$\frac{\cos(x+\frac{\pi}{3})}{\sin x + \cos(x-\frac{\pi}{3})}$	$\frac{\pi}{3}$	10.16	$\frac{\sin x + \cos(x + \frac{\pi}{4})}{1 + \sin^2 x}$	$\frac{\pi}{3}$
10.7	$\frac{\cos x}{\sin x + 2\sin 2x}$	$\frac{\pi}{6}$	10.17	$\frac{\sin x + 2\sin 2x}{1 + \sin^2 x}$	$\frac{\pi}{6}$
10.8	$\frac{\sin^2 x}{2\sin x + \cos x}$	$\frac{\pi}{4}$	10.18	$\frac{2\sin x + \cos x}{1 + \sin^2 x}$	$\frac{\pi}{4}$
10.9	$\frac{\sin 2x}{\sin x + \cos(x + \frac{\pi}{4})}$	$\frac{\pi}{4}$	10.19	$\frac{\sin x + \cos(x + \frac{\pi}{4})}{1 + \sin^2 x}$	$\frac{\pi}{4}$
10.10	$\frac{\cos^2 x}{\sin x + 2\sin 2x}$	$\frac{\pi}{2}$	10.20	$\frac{\sin x + 2\sin 2x}{1 + \sin^2 x}$	0

Решение типовых примеров

Задача 1.20 Найдём приращение функции f(x) в точке $x_0=2$: $\Delta f=f(2+h)-f(2)=((2+h)^3-3(2+h)^2+5\cdot(2+h)-4)-(2\cdot(2)^3-3(2)^2+5\cdot(2)-4)=5\cdot h+(3h^2+h^3)$. Заметим, что $\lim_{h\to 0}\frac{3h^2+h^3}{h}=0$ и, следовательно, $3h^2+h^3=o(h)$. Поскольку нам удалось представить приращение функции в виде $\Delta f=k\cdot h+o(h)$, то f(x) дифференцируема в точке $x_0=2$. При этом $df=5\cdot h$.

Задача 2.20
$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{5h + o(h)}{h} = 5.$$

Заметим, что и в общем случае дифференцируемой функции (то есть такой функции, у которой приращение представимо в виде $\Delta f = kh + o(h)$) производная вычисляется очень легко (она равна k).

Задача 3.20 Заметим, что $\frac{\sin 5 \cdot (0 + \Delta x) - \sin 5 \cdot 0}{\Delta x} = \frac{\sin \Delta x}{\Delta x}$. В столбец A листа EXCEL, начиная с ячейки A1, введите указанные значения Δx . В

ячейку B1 введите формулу =SIN(5*A1)/A1 и сделайте «заполнить вниз». Для ячеек столбца B выберите числовой формат и десять знаков после запятой. Вы увидите, что результаты будут быстро приближаться к числу 5.

Задача 4.20 В ячейку A1 листа EXCEL введите число 0. В ячейку A2 формулу =A1+0,004. Выделите диапазон ячеек A2:A1001 и произведите заполнение вниз (выделять мышкой 1000 ячеек, конечно, можно, но очень неудобно). В ячейку B1 введите формулу для функции $f(x) = x\sqrt{x^2 + 1}$, то есть формулу = $A1*(A1^2+1)^0,5$, выделите диапазон ячеек B1:B1001 и заполните вниз. В ячейку D1 введите число k (например, число 1), в столбец C (от C1 до C1001) - значения функции $y = k(x - x_0) + f(x_0)$ таким же образом, как и для функции f(x) (вам придётся вводить =\$D\$1*(A1-2)+2*5^0.5). После сделать формулу ЭТОГО онжом «ВСТАВИТЬ», «ДИАГРАММА», «ТОЧЕЧНАЯ» и построить графики по рядам \$A\$1:\$A\$1001 и \$B\$1:\$B\$1001, а также по рядам \$A\$1:\$A\$1001 и \$C\$1:\$C\$1001.

Задача 5.20 Из школьного курса физики известно, что при равноускоренном движении тело движется по закону $s(t) = \frac{at^2}{2} + v_0 t + s_0$, где a - ускорение, v_0 - начальная скорость, s_0 - начальный путь. В нашем случае можно говорить о падении (ускорение примерно равно ускорению свободного падения) с начальной скоростью $v_0 = 0, 2 \frac{M}{ce\kappa}$). Требуется найти скорость тела через 10 секунд после начала падения. Сначала мы вычисляем среднюю скорость, организуя вычисления в EXCEL так, как при решении задачи 3.20. Численный эксперимент показывает, что средняя скорость стремиться к 100 ($\frac{M}{ce\kappa}$) при $\Delta t \rightarrow 0$. Вычислим производную. Поскольку правила вычисления производных ещё не изучались, то вычислять будем непосредственно по определению:

$$f'(10) = \lim_{h \to 0} \frac{f(10+h) - f(10)}{h} = \lim_{h \to 0} \frac{(9,8(10+h)^2) + (0,2\cdot10) - (9,8(10)^2)}{2} + (0,2\cdot10)}{h} = 100.$$

Мы ДОКАЗАЛИ, что производная при t = 10 (то есть мгновенная скорость в момент 10 сек), действительно, равна 100.

Задача 6.20 Убедимся, что односторонние пределы функции f(x) в точке x_0 равны $f(x_0)$. Это доказывает непрерывность функции f(x) в точке x_0 :

$$\lim_{x \to 1+0} f(x) = \lim_{x \to 1+0} x^2 = \lim_{x \to 1} x^2 = \lim_{x \to 1} x \cdot \lim_{x \to 1} x = 1 = f(1)$$

$$\lim_{x \to 1-0} f(x) = \lim_{x \to 1-0} x = \lim_{x \to 1} x = 1 = f(1)$$

Убедимся, что односторонние пределы отношения $\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ не равны между собой :

$$\lim_{\Delta x \to 0+0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0+0} \frac{f(1 + \Delta x) - f(1)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0+0} \frac{(1 + \Delta x)^2 - 1^2}{\Delta x} = \lim_{\Delta x \to 0+0} \frac{2\Delta x + (\Delta x)^2}{\Delta x} = 2.$$

$$\lim_{\Delta x \to 0-0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0-0} \frac{f(1 + \Delta x) - f(1)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0-0} \frac{(1 + \Delta x) - 1^2}{\Delta x} = \lim_{\Delta x \to 0-0} \frac{\Delta x}{\Delta x} = 1.$$

Это доказывает $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ не существует, то есть функция f(x) не имеет производной (не дифференцируема) в точке x_0 .

Задача 7.20

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\cos(\frac{\pi}{6} + \Delta x) - \cos(\frac{\pi}{6})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin(\frac{\pi}{6} + \frac{\Delta x}{2})\sin\frac{\Delta x}{2}}{\Delta x} = -\sin\frac{\pi}{6}\lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = -\sin\frac{\pi}{6} = -\frac{1}{2}$$

Задача 8.20 Найдём точки пересечения. Для этого решим уравнение $x^3 - 4x^2 + 3x = 0$: $x_1 = 0$, $x_2 = 1$, $x_3 = 3$. Углом между кривой и прямой называется угол между прямой и касательной к этой кривой, проведённой в точке пересечения. Поскольку угловой коэффициент касательной равен производной функции в соответствующей точке, то наша задача сводится к вычислению производных в соответствующих

точках : $f'(x_0) = 3x_0^2 - 8x_0 + 3$ (производную можно найти либо по правилам вычисления производных, известных вам из курса средней школы, либо по определению производной), f'(0) = 3, f'(1) = -4, f'(3) = 6. Заметим, что f'(1) отрицательна, иначе говоря, отрицательным является тангенс угла, образованного касательной с положительным направлением оси Ox, и, соответственно, угол является тупым. Он равен $\pi - arctg 4$ (угол между прямыми — касательной к графику и осью Ox- равен arctg 4). Другие два угла равны arctg 3 и arctg 6.

Задача 9.20 Касательная параллельна оси абсцисс тогда и только тогда, когда её угловой коэффициент равен нулю. Поскольку угловой коэффициент касательной в точке $(x_0, f(x_0))$ равен производной в x_0 , нужно найти производную f'(x) и решить уравнение f'(x) = 0.

Задача 10.20 Уравнение прямой, не параллельной оси Ox, имеет вид y = kx + b (1). Так как касательная проходит через точку $(x_0, f(x_0))$, то координаты этой точки должны удовлетворять уравнению y = kx + b и, следовательно, $f(x_0) = kx_0 + b$. Отсюда получаем, что $b = f(x_0) - kx_0$ и уравнение (1) приобретает вид $y = k(x - x_0) + f(x_0)$. Для завершения решения задачи осталось найти угловой коэффициент касательной, то есть производную в точке x_0 . Учитывая ограничение на использование правил вычисления производных, заметим, что $\sin 2x = 2\sin x \cos x$ и можно использовать правило о производной произведения), а $1 + \sin^2 x = 1 + \sin x \cdot \sin x$.