Содержание

Введение	4
Тема 1 Числовые множества	5
Практическое занятие 1 Числовые множества	5
Практическое занятие 2 Грани числовых множеств	13
Практическое занятие 3 Множество комплексных чисел	19
Тема 2 Теория пределов	30
Практическое занятие 1 Числовые последовательности	30
Практическое занятие 2 Предел последовательности	39
Практическое занятие 3 Предел функции	50
Практическое занятие 4 Бесконечно малые функции	67
Практическое занятие 5 Непрерывность функции	75
Индивидуальные домашние задания	87
ИДЗ-1 Числовые множества	87
ИДЗ-2 Предел последовательности	99
ИДЗ-3 Предел и непрерывность функции	105
ЛИТЕРАТУРА	118

Введение

Практическое пособие является первой частью комплекса практических пособий по курсу «Математический анализ» для студентов физического факультета. Оно адресовано как студентам, так и преподавателям. Книга написана в соответствии с действующей программой по данному курсу и содержит наборы индивидуальных домашних заданий.

Пособие включает материал по темам «Числовые множества», «Предел последовательности», «Предел и непрерывность функции», которые условно можно назвать «Введение в анализ».

Структура пособия основана на рабочей программе по данному курсу, поэтому каждая тема разбита на части, соответствующие одному практическому занятию. Материал каждого занятия разбит на следующие пункты:

- основные теоретические сведения и формулы;
- вопросы для самоконтроля;
- типовые примеры;
- задания для аудиторной и домашней работ;
- варианты индивидуальных домашних заданий;
- список используемой литературы.

При подборе задач авторами использованы «Сборник задач и упражнений по математическому анализу» Б. П. Демидовича (1990), «Математический анализ в вопросах и задачах» В. Ф. Бутузова (1984), «Сборник индивидуальных заданий» А. П. Рябушко (1991) и другие. Поэтому многие задачи пособия не претендуют на оригинальность, хотя среди них есть целый ряд новых.

Авторы надеются, что данное пособие будет полезным для преподавателей при проведении практических занятий и студентам в их самостоятельной работе над предметом. Они с благодарностью воспримут все критические замечания и пожелания, направленные на улучшение его содержания.

Тема 1 Числовые множества

Практическое занятие 1 Числовые множества

- 1.1 Язык теории множеств
- 1.2 Понятие функции

1.1 Язык теории множеств

Понятие множества считается первоначальным, неопределяемым. Под *множеством* понимается совокупность определенных и отличных друг от друга объектов, объединенных общим характерным признаком в единое целое. Объекты, из которых состоит множество, называются элементами множества.

Способы задания множеств:

- перечислением его элементов если множество A состоит из элементов a , b , c , d , то пишут $A = \{a,b,c,d\}$;
- указанием характеристики свойств элементов если множество A задается указанием характерного свойства P(x) его элементов, то пишут $A = \{x | P(x)\}$.
- диаграммы Эйлера-Венна множество изображается в виде кругов, треугольников или геометрических фигур произвольной формы, внутри которых располагаются элементы множества.

Множество, не содержащее ни одного элемента, называется nустым и обозначается символом \emptyset .

Множества A и B называются pавными, если каждый элемент множества A является элементом множества B и, наоборот, каждый элемент множества B является элементом множества A. Равенство множеств A и B обозначают A=B. Равные множества состоят из одних и тех же элементов. Если множество A не paвно множеству B, то пишут $A \neq B$.

Множество A, $A \neq \emptyset$, называется nodмножеством множества B, $B \neq \emptyset$, если каждый элемент множества A является элементом множества B. Если A — подмножество множества B, то пишут $A \subseteq B$.

Понятие подмножества определяет между двумя множествами *отношение включения*. Если $A \subseteq B$ и $A \neq B$, то A называется

собственным подмножеством множества B и обозначается $A \subset B$.

Будем рассматривать всевозможные подмножества одного и того же множества, которое называется *основным* или *универсальным*. Обозначается универсальное множество буквой U.

Объединением множеств A и B называется множество $A \cup B$, содержащее те и только те элементы, которые принадлежат хотя бы одному из множеств A или B (или обоим одновременно):

$$A \cup B = \{x \mid x \in A \text{ или } x \in B \text{ или } x \in A \text{ и } x \in B\}.$$

Пересечением множеств A и B называется множество $A \cap B$, состоящее из всех тех и только тех элементов, каждый из которых принадлежит обоим множествам одновременно:

$$A \cap B = \{ x \mid x \in A \text{ if } x \in B \}.$$

Pазностью двух множеств B и A называется множество $B \setminus A$, состоящее из всех тех и только тех элементов, которые принадлежат B, но не принадлежат A:

$$B \setminus A = \{x \mid x \in B \text{ if } x \notin A\}.$$

Разность $U\setminus A$ называется дополнением множества A до универсального множества U и обозначается \overline{A} :

$$\overline{A} = U \setminus A = \{x \mid x \notin A\}.$$

Пара элементов (x;y), $x \in A$, $y \in B$, называется упорядоченной, если указан порядок записи элементов x и y. Элементы x и y упорядоченной пары (x;y) называются координатами, при этом x — первая координата, y — вторая.

При этом $(x_1; y_1) = (x_2; y_2)$ тогда и только тогда, когда

$$x_1 = x_2$$
 и $y_1 = y_2$.

Основные числовые множества:

- множество *натуральных* чисел, т.е. чисел, которые используются при счете: $\mathbf{N} = \{1,2,3,...\}$;
- объединение натуральных чисел, чисел, им противоположных и нуля составляет множество *целых* чисел \mathbf{Z} :

$$\mathbf{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\};$$

— множество чисел вида p/n, где $p \in \mathbb{Z}$; $n \in \mathbb{N}$, называется множеством рациональных чисел \mathbb{Q} :

$$\mathbf{Q} = \left\{ q = \frac{p}{n} \middle| p \in \mathbf{Z}, n \in \mathbf{N} \right\};$$

- числа, которые представимы в виде бесконечной непериодической десятичной дроби называются *иррациональными*;
- объединение рациональных и иррациональных чисел составляет множество действительных чисел ${f R}$.

Очевидно,
$$N \subset Z \subset Q \subset R$$
.

Множество действительных чисел ${\bf R}$, пополненное символами $-\infty$ и ∞ , обозначается $\overline{{\bf R}}$ и называется расширенным множеством действительных чисел, бесконечности $-\infty$ и ∞ называются бесконечно удаленными точками числовой прямой, остальные точки – конечными точками числовой прямой.

Основными промежутками во множестве $\overline{\mathbf{R}}$ являются:

- интервал с концами a и b:

$$(a;b) = \{x \in \mathbf{R} \mid a < x < b\};$$

- *отрезок* с концами a и b:

$$[a;b] = \{x \in \mathbf{R} \mid a \le x \le b\};$$

– полуинтервалы:

$$[a;b] = \{x \in \mathbf{R} \mid a \le x < b\}, (a;b] = \{x \in \mathbf{R} \mid a < x \le b\};$$

- бесконечные интервалы и полуинтервалы:

$$[a;+\infty) = \{x \in \mathbf{R} \mid x \ge a\}, \ (a;+\infty) = \{x \in \mathbf{R} \mid x > a\},$$
$$(-\infty;b) = \{x \in \mathbf{R} \mid x < b\}, \ (-\infty;b] = \{x \in \mathbf{R} \mid x \le b\},$$
$$(-\infty;+\infty) = \{x \in \mathbf{R} \mid -\infty < x < \infty\}.$$

Декартовым произведением двух множеств A и B называется множество, обозначаемое $A \times B$, состоящее из всевозможных упорядоченных пар (x;y):

$$A \times B = \{(x, y) | \forall x \in A, \forall y \in B \}.$$

Если A=B , то $A\times A$ называется декартовым квадратом и обозначается A^2 , т.е. $A^2=A\times A$.

Пусть X, Y – произвольные множества.

1.2 Понятие функции

Соответствие, при котором каждому элементу $x \in X$ ставится в соответствие единственный элемент $y \in Y$, называется функцией (отображением), заданной на множестве X со значениями во множестве Y, при этом элемент x называется независимой переменной (аргументом), элемент y – зависимой переменной.

Обозначается:

$$y = f(x), x \in X, f: x \mapsto y \text{ при } x \in X \text{ и } y \in Y; f: X \to Y.$$

Множество X называется областью определения функции f и обозначается D(f). Множество тех $y \in Y$, каждый из которых поставлен в соответствие хотя бы одному $x \in X$, называется множеством значений функции f и обозначается E(f). Очевидно, что $E(f) \subseteq Y$.

Определение функции с помощью логических символов записывается в виде:

$$f: x \mapsto y \Leftrightarrow \forall x \in X \exists ! y \in Y : y = f(x).$$

Элемент $y \in Y$, в который отображен $x \in X$, называется образом элемента x при отображении f и обозначается f(x). Элемент x называется прообразом элемента f(x). Поэтому отображение удобно записывать в виде y = f(x), $x \in X$.

Множество образов всех элементов $x \in X$ при отображении f называется *образом множества* X при этом отображении:

$$f(X) = \{f(x) | x \in X\} \subseteq Y.$$

Полным прообразом множества $B \subset Y$ при отображении f называется множество $f^{-1}(B)$, состоящее из всех прообразов всех элементов множества B:

$$f^{-1}(B) = \left\{ x \in X \middle| f(x) \in B \right\} \subseteq X.$$

Функция f^{-1} называется *обратной* к функции f, если элементу $y \in Y$ ставится в соответствие тот элемент $x \in X$, образом которого при отображении f является y.

Определение обратной функции с помощью логических символов записывается в виде:

$$f^{-1}: x \mapsto y \iff \forall y \in Y \exists x \in X : x = f^{-1}(y).$$

Если $f: x \mapsto y$ и $g: y \mapsto z$ функции, то функция $g \circ f: x \mapsto z$, ставящая в соответствие каждому элементу $x \in X$ элемент $z \in Z$, $g \circ f = g(f(x))$, называется *сложной* функцией или *композицией* функций f и g.

Два множества A и B называются эквивалентными (равномощными), если существует хотя бы одно взаимно однозначное отображение одного множества на другое. Обозначается: $A \sim B$.

Всякое множество, эквивалентное множеству натуральных чисел, называется *счетным*. Если множество счетное, то его элементы можно занумеровать. Множества, состоящие из конечного числа элементов, называются *конечными*. Множество, не являющееся конечным, называется *бесконечным*. Если A — конечное множество, то число его элементов обозначается |A| или dim A и называется *мощностью множества* A.

Вопросы для самоконтроля

- 1 Что вы понимаете под термином «множество»? Какие существуют способы задания множества? Приведите примеры.
- 2 Какие множества называются равными? Приведите примеры.
- 3 Что называется подмножеством множества. Какое подмножество называется собственным подмножеством множества.
- 4 Запишите с помощью кванторов определение операций объединения, пересечения, разности и дополнения.
 - 5 Что называется декартовым произведением множеств?
- 6 Что называется функцией? Дайте определение области определения, области значения функции.
 - 7 Какие множества называются эквивалентными?
- 8 Какое множество называется счетным? Приведите примеры.
 - 9 Какие числовые множества вы знаете?

Решение типовых примеров

1 Найдите пересечение, объединение, разность множеств $A = \left\{ \frac{1}{5^n} \middle| n \in \mathbb{N} \right\}$ и $B = \left\{ \frac{1}{25^n}, \middle| n \in \mathbb{N} \right\}$.

Решение. Поскольку

$$A = \left\{ \frac{1}{5}; \frac{1}{25}; \frac{1}{125}; \frac{1}{625}; \dots \right\} \text{ if } B = \left\{ \frac{1}{25}; \frac{1}{625}; \frac{1}{15625}; \dots \right\},$$

TO

$$A \cap B = \left\{ \frac{1}{25}; \frac{1}{625}; \dots \right\} = B, \ A \cup B = \left\{ \frac{1}{5}; \frac{1}{25}; \frac{1}{125}; \frac{1}{625}; \dots \right\} = A,$$
$$A \setminus B = \left\{ \frac{1}{5}; \frac{1}{125}; \dots \right\} = \left\{ \frac{1}{5^{2k-1}} \middle| \ k \in \mathbf{N} \right\}, \ B \setminus A = \emptyset.$$

2 Доказать, что $\sqrt{2}$ – иррациональное число.

 $Pe\, w\, e\, h\, u\, e$. Доказываем методом от противного. Допустим, что существует такое рациональное число $\frac{m}{n}$ (несократимая

дробь), квадрат которого равен 2. Тогда
$$\left(\frac{m}{n}\right)^2 = 2\;$$
 или $m^2 = 2n^2\;$.

Следовательно, число m^2 есть четное число. Отсюда и m есть четное число. Если m — четное, то оно представимо в виде m=2k. Тогда имеем $n^2=2k^2$. Следовательно, n^2 есть четное число, тогда и n — четное. Таким образом, числа m и n являются четными. Поэтому дробь $\frac{m}{n}$ сократима, что противоречит предположению. Допущение не верно, т.е. не существует рационального числа, квадрат которого равен 2, а, значит, $\sqrt{2}$ — иррациональное число, $\sqrt{2}=1,41421356...$

3 Доказать, что 0.4(9) = 0.5(0).

P e u e h u e. Пусть x = 0.4(9).

Тогда 100x - 10x = 49, (9) - 4(9) = 45.

Откуда
$$x = \frac{45}{90} = \frac{1}{2} = 0,5 = 0,5(0)$$

Задания для аудиторной работы

1 Какие элементы множества

$$A = \{-40; -32, 4; -8; -\frac{1}{9}; 0; \frac{5}{7}; 6; 12; 19\frac{2}{9}; 30\}$$

являются натуральными числами, целыми числами, дробными, рациональными числами, отрицательными числами, неотрицательными числами?

2 Составьте подмножества множества

$$B = \{-24; -23\frac{1}{3}; -22; -9; 0; \frac{1}{5}; 2; 5; 9; 10; 12; 24\},\$$

элементами которых являются N, Z, нечетные, четные числа, отрицательные числа, числа кратные 4.

- 3 Какие из следующих утверждений $N\subset Z$, $Z\subset N$, $Z\subset Q$, $Q\subset Z$ справедливы?
 - 4 Укажите пустые множества среди:
 - а) множество целых корней уравнения $x^2 16 = 0$;
 - б) множество целых корней уравнения $x^2 + 16 = 0$;
 - в) множество натуральных чисел, меньших 1.
- **5** Найдите пересечение, объединение, разность множеств из упражнения 1 и 2.
 - 6 Найдите пересечение, объединение, разность множеств

$$A = \left\{ \frac{1}{3^n} \middle| \quad n \in \mathbf{N} \right\} \quad \mathbf{M} \quad B = \left\{ \frac{1}{10^n} \middle| \quad n \in \mathbf{N} \right\}.$$

- 7 Доказать, что $\sqrt{3}$ иррациональное число.
- **8** Докажите, что любую периодическую десятичную дробь, не имеющую цифры 9 в периоде, можно получить как результат деления двух натуральных чисел.
 - **9** Доказать, что 0.6(9) = 0.7(0).

Задания для домашней работы

- **1** Найдите пересечение, объединение, разность множеств $A = \{-2; -1; 0; 1; 2; 3; ...\}$ и $B = \{3; 9; 27; ...\}$.
- **2** Верны ли равенства: 0.41(9) = 0.42(0) = 0.42?
- **3** Какие из чисел $-\frac{5}{9}$, 1,(3), $\frac{27}{12}$, $-\frac{6}{7}$, 0,(4), 9, -2,3, 0,(2) являются рациональными? Каждое число представьте в виде соотношения $\frac{m}{n}$, $m \in \mathbb{Z}$, $n \in \mathbb{N}$.
 - **4** Найдите пересечение, объединение, разность множеств $A = \{2^n | n \in \mathbb{N} \}$ и $B = \{(-1)^n \cdot 2 | n \in \mathbb{N} \}$.
- **5** Докажите, что любую периодическую десятичную дробь, имеющую в периоде цифру 9, нельзя получать как результат деления двух натуральных чисел.
 - **6** Доказать, что $\sqrt{6}$ иррациональное число.

Практическое занятие 2 Грани числовых множеств

- 2.1 Точные грани числовых множеств
- 2.2 Метод математической индукции

2.1 Точные грани числовых множеств

Рассмотрим произвольное числовое множество $A \subset \mathbf{R}$.

Множество действительных чисел A называется *ограниченным сверху*, если существует такое действительное число M, что каждое число $x \in A$ удовлетворяет неравенству $x \le M$, т.е.

$$\exists M \in \mathbf{R} : \forall x \in A \ x \leq M$$
.

При этом число M называется верхней гранью множества A .

Множество А неограничено сверху, если

$$\forall M \in \mathbf{R} : \exists x_0 \in A \ x_0 > M$$
.

Элемент $c_1 \in A$ называется наибольшим элементом множества A , если $\forall x \in A \ x < c_1$.

Наименьшая из всех верхних граней ограниченного сверху множества $A \subset \mathbf{R}$ называется *точной верхней гранью*.

Обозначается:

$$M = \sup A \iff \forall x \in A : x \leq M \quad \text{if } \forall M' < M \quad \exists x_0 > M', x_0 \in A .$$

Множество действительных чисел A называется *ограниченным снизу*, если существует такое действительное число m, что каждое число $x \in A$ удовлетворяет неравенству $x \ge m$, т.е.

$$\exists m \in \mathbf{R} : \forall x \in A \ x \ge m$$
.

При этом число m называется $\mathit{нижней}$ гранью множества A .

Множество А неограничено снизу, если

$$\forall m \in \mathbf{R} : \exists x_0 \in A \ x_0 < m$$
.

Элемент $c_2 \in A$ называется наименьшим элементом множества A , если $\forall x \in A$ $x > c_2$.

Наибольшая из всех нижних граней ограниченного снизу множества $A \subset \mathbf{R}$ называется *точной нижней гранью*.

Обозначается:

$$m = \inf A \iff \forall x \in A : x \ge m \text{ if } \forall m' > m \quad \exists x_0 \le m', x_0 \in A.$$

Множество, ограниченное сверху и снизу, называется *ограниченным*: $\exists K > 0$: $\forall x \in A \quad |x| \le K$.

Ограниченное сверху (снизу) непустое множество имеет точную верхнюю (нижнюю) грань.

2.2 Метод математической индукции

Метод математической индукции используется при доказательстве утверждений, зависящих от натурального аргумента. Для доказательства необходимо:

- 1) проверить верность утверждения при n=1 (либо для первого натурального числа, для которого доказывается утверждение);
- 2) в предположении, что утверждение верно для n=k, доказать его справедливость для следующего натурального числа n=k+1.

При решении задач часто используется бином Ньютона.

Пусть задано конечное множество элементов. Группы элементов, состоящие их одних и тех элементов и отличающиеся друг от друга только их порядком, называются nepecmanos kamu. Число возможных перестановок из n элементов равно

$$P_n = n!, n! = 1 \cdot 2 \cdot 3 \cdot ... \cdot n, 0! = 1.$$

Каждое множество, содержащее k элементов из числа n заданных, называется сочетанием n элементов по k . Число всевозможных сочетаний из n элементов по k определяется по формуле

$$C_n^k = \frac{n!}{k!(n-k)!}.$$

Число C_n^k можно последовательно находить с помощью треугольника Паскаля, который представляет собой треугольную таблицу.

$$1 \\ 1 \\ 1 \\ 4 \\ 3 \\ 3 \\ 4 \\ 1$$

Первые и последние числа во всех строчках таблицы равны 1. Начиная с третьей строчки, каждое число в строчке, отличное от

первого и последнего, получается сложением двух ближайших к нему чисел предшествующей строчки. В каждой n строчке стоят последовательно числа C_n^0 , C_n^1 , C_n^2 , ..., C_n^n .

Число сочетаний используется при вычислении коэффициентов в формуле бинома Ньютона:

$$(a+b)^n = a^n + C_n^1 a^{n-1} b^1 + C_n^2 a^{n-2} b^2 + \dots + C_n^{n-1} a^1 b^{n-1} + b^n.$$

Вопросы для самоконтроля

- 1 В чем заключается метод математической индукции?
- 2 Какие множества называются ограниченными. Приведите примеры ограниченных и неограниченных множеств.
- 3 Дайте определение точной верхней грани, нижней грани множества. Приведите примеры множеств, ограниченных сверху, снизу.
- 4 Приведите примеры числовых множеств X, у которых: а) $\sup X \in X$; б) $\sup X \notin X$; в) $\inf X \in X$; г) $\inf X \notin X$. Имеет ли множество X в случаях а) и б) наибольше, а в случаях в) и г) наименьшее число?
 - 5 Что означает запись $\sup X = +\infty$ и $\inf X = -\infty$?

Решение типовых примеров

1 Методом математической индукции докажите, что для любого $n \in \mathbb{N}$ $n \le 2^{n-1}$.

 $P\,e\, w\,e\, h\, u\, e$. При n=1 неравенство верно т.к. $1 \le 1$. Предположим, что неравенство верно для $k \in \mathbb{N}$: $k \le 2^{k-1}$. Докажем, что неравенство верно для (k+1) :

$$2^{k} = 2^{k-1} \cdot 2 \ge 2 \cdot k \ge k+1$$
.

Последнее неравенство следует из очевидного неравенства: $(k-1)^2 \ge 0$.

Тем самым доказано, что неравенство верно $\forall n \in \mathbb{N}$.

2 Методом математической индукции докажите, что для любого $n \in \mathbb{N}$ справедливо равенство

$$1+2+3+\ldots+n=\frac{n(n+1)}{2}$$
.

Peuehue. При n=1 равенство очевидно. Предположим, что оно верно для натурального числа k:

$$1+2+3+\ldots+k=\frac{k(k+1)}{2}$$
.

Проверим верность утверждения для следующего натурального числа (k+1):

$$1+2+3+\ldots+k+(k+1)=\frac{k(k+1)}{2}+(k+1)=(k+1)\left(\frac{k}{2}+1\right)=$$
$$=(k+1)\left(\frac{k+2}{2}\right)=\frac{(k+1)(k+2)}{2}$$

Следовательно, утверждение верно для любого $n \in \mathbb{N}$.

3 Найти точную верхнюю грань интервала (0,1).

 $P\,e\,w\,e\,H\,u\,e$. Так как для любого $x\in(0;1)\Rightarrow x<1$, то число 1 является верхней гранью. Покажем, что это точная верхняя грань, т.е. для любого $\overline{x}<1$ \exists $a\in(0,1):a>\overline{x}$.

Действительно, если $\overline{x} \le 0$, то $\forall a \in (0;1)$: a > x. Если $\overline{x} > 0$, то на интеграле $(\overline{x};1)$ существует действительное число a: $\overline{x} < a < 1$, т.е. $a > \overline{x}$.

Таким образом, для числа 1 выполнены оба условия определения точной грани $\sup(0;1)=1$ ($\sup(0;1)\notin(0;1)$).

4 Найти точные грани множества всех правильных рациональных дробей $\frac{m}{n}$ и показать, что это множество не имеет наименьшего и наибольшего элементов.

$$P \, e \, w \, e \, n \, u \, e$$
 . Шаг 1. Пусть $X = \left\{ \frac{m}{n} \middle| m, n \in \mathbb{N}, m < n \right\}$. Так как $\frac{m}{n} > 0$, $\forall m, n \in \mathbb{N}$, то 0 — нижняя грань множества X . Более того, $\forall \overline{x} > 0$, так как, если $\overline{x} \ge 1$, то $a = \frac{1}{2}$ удовлетворяет условию $a < \overline{x}$. Если $0 < \overline{x} < 1$, то число \overline{x} можно записать в виде беско-

нечной десятичной дроби: $\overline{x} = 0, x_1, x_2 \dots x_k \dots$, причем $\exists x_n : x_n \neq 0$.

Рациональное число $a=0,x_1,x_2,...,x_{n-1}(x_n-1)$ удовлетворяет условию $0 < a < \overline{x} < 1$, т.е. является правильной рациональной дробью и $0 < \overline{x}$. Следовательно, для числа 0 выполнено определение точной, нижней грани: $\inf X=0$. При этом $\inf X \not\in X$, так как $\frac{0}{n} \not\in X$, 0- не натуральное число и поэтому множество не имеет наименьшего элемента.

 $Ma \ge 2$. Так как X содержит только правильные дроби, то $\frac{m}{n} < 1$, то число 1 — верхняя грань множества X. Более того, $\forall \overline{x} < 1 \ \exists \ \frac{m}{n} \in X : \frac{m}{n} > \overline{x}$. Действительно, \exists рациональное число $x_1 = \frac{m}{n} : \overline{x} < x_1 < 1$. Значит, $x_1 \in X$ и для числа 1 выполнены оба условия определения точной верхней грани. Следовательно, $\sup X = 1$. Но $\sup X \notin X$, т.к. $\frac{m}{n} = 1$ при m = n, что противоречит определению правильной дроби. Поэтому множество X не имеет наибольшего элемента.

Задания для аудиторной работы

1 Методом математической индукции докажите, что для любого $n \in \mathbb{N}$ справедливо равенство

$$1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$$
.

2 Доказать, что для любого $n \in \mathbb{N}$ и для любого x > -1 справедливо неравенство Бернулли:

$$(1+x)^n \ge 1+nx.$$

3 Доказать, что для любых положительных чисел $y_1, y_2, \dots y_n$, удовлетворяющих условию $y_1 \cdot y_2 \cdot \dots \cdot y_n = 1$, имеет место неравенство: $y_1 + y_2 + \dots y_n \ge n$.

4 Доказать неравенство для $n \in \mathbb{N}$, $n \ge 2$

$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > \frac{1}{2}$$
.

5 Докажите, что множество всех чисел вида $\frac{m}{n}$, где $n,m \in \mathbb{N}$ и n- четное, не имеет наименьшего элемента. Найдите точную нижнюю грань множества.

6 Пусть A – множество чисел, противоположных по знаку чисел из множества B . Докажите, что

$$\sup A = -\inf B$$
, $\inf A = -\sup B$.

Задания для домашней работы

1 Используя метод математической индукции, докажите равенство $n \in \mathbb{N}$

$$1^3 + 2^3 + 3^3 + ... + n^3 = \frac{n^2(n+1)^2}{4}$$
.

2 Докажите, что при любом натуральном n число $n^3 + 5n$ кратно 3.

3. Используя метод математической индукции, докажите неравенства $n \in \mathbb{N}$:

a)
$$1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}$$
, $(n \ge 2)$, 6) $\frac{1}{n!} \le \frac{1}{2^{n-1}}$, $(n \ge 2)$.

4 Используя метод математической индукции, докажите неравенство

$$\frac{x_1 + x_2 + \ldots + x_n}{n} \ge \sqrt[n]{x_1 \cdot x_2 \cdot \ldots \cdot x_n}$$
, при $x_k \ge 0$, $x = \overline{1, n}$.

5 Найти точную нижнюю грань интервала (0;1).

6 Пусть $X,Y\subset \mathbf{R}$ и $Y\subset X$, X- ограничено сверху. Доказать, что Y также ограничено сверху и $\sup Y\leq \sup X$.

7 Докажите, что множество всех чисел вида $\frac{m}{n}$, где $n,m \in \mathbb{N}$ и m — четное, не имеет наименьшего элемента. Найдите точную нижнюю грань множества.

Практическое занятие 3 Множество комплексных чисел

- 3.1 Понятие комплексного числа
- 3.2 Действия над комплексными числами

3.1 Понятие комплексного числа

Комплексным числом z называется выражение вида x+iy, где $x,y\in \mathbf{R}$, где i удовлетворяет условию $i^2=-1$, при этом число x называется действительной частью а число y — мнимой частью комплексного числа z.

Для комплексного числа z приняты обозначения

$$z = x + iy$$
, $\operatorname{Re} z = x$, $\operatorname{Im} z = y$.

Запись комплексного числа в виде z=x+iy называется алгебраической формой комплексного числа. Множество комплексных чисел обозначается ${\bf C}$. Любое действительное число x можно рассматривать как комплексное число, т.е. $x=x+0\cdot i$. Поэтому множество действительных чисел содержится во множестве комплексных чисел: ${\bf R} \subset {\bf C}$. Отсюда

$$N \subset Z \subset Q \subset R \subset C$$
.

Два комплексных числа $z_1 = x_1 + iy_1$ и $z_2 = x_2 + iy_2$ называются *равными* тогда и только тогда, когда равны их действительные и мнимые части:

$$x_1 + iy_1 = x_2 + iy_2 \Leftrightarrow \begin{cases} x_1 = x_2, \\ y_1 = y_2. \end{cases}$$

Комплексное число $z = 0 + i \cdot 0$, называется *нулем* и обозначается 0.

Понятие неравенства для комплексных чисел существует лишь в смысле отрицания равенства, т. е. $z_1 \neq z_2$ означает, что число z_1 не равно числу z_2 . Понятия «меньше» и «больше» для комплексных чисел не определены.

Комплексное число $\bar{z}=x-iy$ называется сопряженным комплексному числу z=x-iy. Два комплексных числа, отличающихся лишь знаком при мнимой части, называются комплексносопряженными.

Комплексное число z = x + iy геометрически изображается на плоскости ${\bf R}^2$ точкой с координатами x, y, или вектором \vec{z} , проекции которого на оси Ox и Oy соответственно равны x и y. При этом координатную плоскость Oxy называется комплексной плоскостью и обозначается ${\bf C}$, ось абсцисс — действительной осью, ось ординат — мнимой осью комплексной плоскости (рисунок 3.1).

Модулем комплексного числа z = x + iy называется расстояние от точки z(x,y) до начала координат и *обозначается* |z|

$$|z| = \sqrt{x^2 + y^2} \ .$$

Aргументом комплексного числа z=x+iy называется угол φ , образованный положительным направлением оси Ox и вектором \vec{z} .

Обозначается Arg z.

Аргумент z ($z \neq 0$) определяется равенствами (рисунок 3.1):

$$\cos \varphi = \frac{x}{|z|} = \frac{x}{\sqrt{x^2 + y^2}}, \ \sin \varphi = \frac{y}{|z|} = \frac{y}{\sqrt{x^2 + y^2}}.$$

Модуль комплексного числа z определяется однозначно, а аргумент φ – с точностью до слагаемого $2k\pi$, $k\in {\bf Z}$.

Значение аргумента, удовлетворяющее условию $-\pi < \phi \le \pi$, , называется *главным значением аргумента* и обозначается arg z .

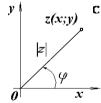


Рисунок 3.1 – Комплексная плоскость С

Тогда $\operatorname{Arg} z = \operatorname{arg} z + 2k\pi$, $k \in \mathbb{Z}$.

Если комплексные числа равны, то их модули равны, а аргументы отличаются на $2k\pi$, $k\in {\bf Z}$.

3.2 Действия над комплексными числами

Суммой комплексных чисел называется комплексное число, действительная и мнимая части которого равны суммам соответствующих частей слагаемых:

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2).$$

Разностью комплексных чисел называется комплексное число, действительная и мнимая части которого равны разностям соответственно действительных и мнимых частей этих чисел:

$$z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2).$$

Умножение комплексных чисел $z_1 = x_1 + iy_1$ и $z_2 = x_2 + iy_2$ определяется формулой

$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1).$$

Деление комплексного числа z_1 на $z_1 \neq 0$ вводится как действие, обратное умножению, т.е. под частным $\frac{z_1}{z_2}$, $\forall z_2 \neq 0$, понимается комплексное число z, такое, что $z_2 \cdot z = z_1$. Частное получается путем умножения числителя и знаменателя дроби $\frac{z_1}{z_2}$ на комплексно-сопряженное знаменателю число \overline{z}_2 :

$$\frac{z_1}{z_2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + i \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2} .$$

Возведение комплексного числа z в степень n, $n \in \mathbb{N}$, рассматривается как умножение z на себя n раз .

Обозначается: z^n .

Tpuzohomempuчeckas форма комплексного uucna. Любому комплексному числу $z \in \mathbb{C}$, заданному в алгебраической форме, соответствует точка $M(x;y) \in \mathbb{R}^2$, положение которой однозначно определяется ее декартовыми координатами x, y. Вводя полярные координаты (полярная ось u совпадает с положительным направлением действительной оси Ox, полюс O-c началом координат O, полярный угол φ равен углу между полярной осью и лучом OM), эту точку можно од-

нозначно определить заданием главного значения аргумента $\arg z$ и модуля |z| комплексного числа z .

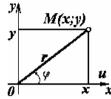


Рисунок 3.2 – Связь декартовых и полярных координат

Из рисунка 3.2 видно, что модуль |z| совпадает с полярным радиусом r точки M(x;y), главный аргумент $\arg z-c$ полярным углом φ , при этом $0 \le r < \infty$, $-\pi < \varphi \le \pi$.

Очевидно, что $x = r \cos \varphi$, $y = r \sin \varphi$.

Тогда

$$z = x + iy = r \cos \varphi + ir \sin \varphi = r(\cos \varphi + i \sin \varphi)$$

Выражение $z = r(\cos \varphi + i \sin \varphi)$ называется тригонометрической формой комплексного числа.

Тригонометрической формой комплексного числа удобно пользоваться при выполнении операций умножения, деления, возведения в степень и извлечения корня.

Пусть
$$z_1 = r_1(\cos \varphi_1 + i \sin \varphi_1), \ z_2 = r_2(\cos \varphi_2 + i \sin \varphi_2).$$

Умножение комплексных чисел в тригонометрической форме $z_1z_2 = r_1r_2(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$

Деление комплексных чисел в тригонометрической форме

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left(\cos(\varphi_1 - \varphi_2) + i \sin(\varphi_1 - \varphi_2) \right)$$

Возведение в степень комплексных чисел в тригонометрической форме

$$z^n = r^n (\cos n\varphi + i \sin n\varphi), n \in \mathbb{N}.$$

Извлечение корня из комплексного числа в тригонометрической форме

$$z = \sqrt[n]{z_0} = \sqrt[n]{r_0} \left(\cos \frac{\varphi_0 + 2k\pi}{n} + i \sin \frac{\varphi_0 + 2k\pi}{n} \right), \quad n \in \mathbb{N},$$

$$k = 0.1.2....n - 1.$$

 Π о к а з а m е л ь н а я ф о p м а к о м n л е к с н о г о ч и с л а . Пусть комплексное число z записано в тригонометрической форме:

$$z = r(\cos\varphi + i\sin\varphi).$$

Используя формулу Эйлера $e^{i\varphi} = \cos \varphi + i \sin \varphi$, получаем

$$z = r e^{i\varphi}$$
.

Выражение $z = r e^{i\phi}$ называется *показательной формой* комплексного числа.

Здесь
$$r = |z|$$
; $\varphi = \arg z + 2k\pi$; $k \in \mathbb{Z}$.

Функция $e^{i\phi}$ обладает свойствами показательной функции с действительным показателем, поэтому формулы умножения, деления, возведения в натуральную степень для комплексных чисел в показательной форме имеют простой вид.

Если
$$z_1=r_1\,{\rm e}^{i\varphi}$$
 , $z_2=r_2\,{\rm e}^{i\varphi}$, то
$$z_1z_2=r_1r_2\,{\rm e}^{i\left(\varphi_1+\varphi_2\right)}\,.$$

Если $z_2 \neq 0$, то

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \frac{e^{i\varphi_1}}{e^{i\varphi_2}} = \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)}.$$

Если $n \in \mathbb{N}$, $z = r e^{i\varphi}$, то

$$z^{n} = \left(r e^{i\varphi}\right)^{n} = r^{n} e^{in\varphi}.$$

$$z_{k} = \sqrt[n]{z} = \sqrt[n]{r} \cdot e^{\frac{i(\varphi + 2k\pi)}{n}}, \quad k = 0,1,2,...,n-1.$$

Вопросы для самоконтроля

- 1 Дайте определение множества комплексных чисел.
- 2 Какие два комплексных числа называются равными, сопряженными? Приведите примеры.
 - 3 Как изображаются комплексные числа на плоскости?

- 4 Дайте определение модуля и аргумента комплексного числа.
- 5 Сформулируйте правила сложения, вычитания, умножения и деления комплексных чисел в алгебраической форме.
- 6 Сформулируйте правила сложения, вычитания, умножения, деления и возведения в степень комплексных чисел в тригонометрической форме.
- 7 Сформулируйте правила сложения, вычитания, умножения, деления и возведения в степень комплексных чисел в показательной форме.

Решение типовых примеров

1 Даны два комплексных числа $z_1=1-i$; $z_2=-2+3i$. Найти z_1+z_2 ; z_1-z_2 ; $z_1\cdot z_2$, $\frac{z_1}{z_2}$.

Peuehue. Используя правила сложения, вычитания, умножения и деления комплексных чисел в алгебраической форме, получим:

$$\begin{aligned} z_1 + z_2 &= (1-i) + (-2+3i) = (1-2) + i(3-1) = -1 + 2i \,, \\ z_1 - z_2 &= (1-i) - (-2+3i) = 1 - i + 2 - 3i = 3 - 4i \,, \\ z_1 \cdot z_2 &= (1-i) \cdot (-2+3i) = -2 + 2i + 3i - 3i^2 = \\ &= -2 + 2i + 3i + 3 = 1 + 5i \,, \\ \frac{z_1}{z_2} &= \frac{z_1 \cdot \overline{z}_2}{z_2 \cdot \overline{z}_2} = \frac{(1-i) \cdot (-2-3i)}{(-2+3i) \cdot (-2-3i)} = \frac{-2 + 2i - 3i - 3}{4 + 9} = \\ &= \frac{-5-i}{13} = -\frac{5}{13} - i\frac{1}{13} \,. \end{aligned}$$

2 Представить комплексные числа z = -1 + i, z = -4, z = i в тригонометрической и показательной формах.

Peuehue. При решении используем определения модуля и аргумента комплексного числа.

Для комплексного числа z=-1+i имеем $x=-1\;;\;y=1\;.$ Тогда модуль равен

$$r = |z| = \sqrt{x^2 + y^2} = \sqrt{(-1)^2 + 1^2} = \sqrt{2}$$
.

Так как

$$\cos\varphi = \frac{x}{\sqrt{x^2 + y^2}} = \frac{-1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}, \ \sin\varphi = \frac{y}{\sqrt{x^2 + y^2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2},$$

то аргумент Arg $z = \frac{3\pi}{4} + 2\pi k$, $k \in \mathbb{Z}$.

Отсюда главное значение аргумента $\arg z = \varphi = \frac{3\pi}{4}$.

Следовательно, число z = -1 + i в тригонометрической форме запишется в виде

$$z = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right),$$

а в показательной – $z = \sqrt{2}e^{i\frac{\pi}{4}}$.

Аналогично для комплексного числа z = -4 имеем:

$$x = -4$$
; $y = 0 \implies r = 4$, $\arg z = \varphi = \pi$; \implies

$$z = 4(\cos \pi + i \sin \pi) = 4e^{i\pi}.$$

Для комплексного числа z = i имеем x = 0; y = 1 и

$$r = 1$$
, $\arg z = \varphi = \frac{\pi}{2} \implies z = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = e^{i\frac{\pi}{2}}$.

3 Вычислить $\left(-\sqrt{2} + i\sqrt{2}\right)^{10}$

 $P\,e\,w\,e\,H\,u\,e$. Представим $z=-\sqrt{2}+i\sqrt{2}$ в тригонометрической форме. Так как $x=-\sqrt{2}$; $y=\sqrt{2}$, то

$$r = \sqrt{x^2 + y^2} = \sqrt{2 + 2} = \sqrt{4} = 2$$
,

$$\cos \varphi = \frac{x}{\sqrt{x^2 + y^2}} = \frac{-\sqrt{2}}{2}, \ \sin \varphi = \frac{y}{\sqrt{x^2 + y^2}} = \frac{\sqrt{2}}{2} \implies \arg z = \varphi = \frac{3\pi}{4}.$$

Тогда
$$z = 2\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right).$$

Подставляя в формулу $z^n = r^n(\cos n\varphi + i\sin n\varphi)$, получим:

$$z^{10} = 2^{10} \left(\cos \frac{3 \cdot 10}{4} \pi + i \sin \frac{3 \cdot 10}{4} \pi \right) = 2^{10} \left(\cos \frac{15}{2} \pi + i \sin \frac{15}{2} \pi \right) =$$

$$= 2^{10} \left(\cos \left(7\pi + \frac{\pi}{2} \right) + i \sin \left(7\pi + \frac{\pi}{2} \right) \right) =$$

$$= 2^{10} \left(\cos \left(\pi + \frac{\pi}{2} \right) + i \sin \left(\pi + \frac{\pi}{2} \right) \right) = 2^{10} \left(0 - i \right) = -2^{10} i.$$

4 Найти все значения корня $\sqrt[5]{1-i}$ и изобразить их в комплексной плоскости **С**.

 $P e \, w \, e \, h \, u \, e$. Для комплексного числа $z = \sqrt[5]{1-i}$ имеем:

$$r = \sqrt{2}$$
; $\arg z = -\frac{\pi}{4}$, $\Rightarrow z = \sqrt[10]{2} \left(\cos \left(-\frac{\pi}{4} \right) + i \sin \left(-\frac{\pi}{4} \right) \right)$.

По формуле Муавра получим:

$$\sqrt[5]{1-i} = \sqrt[10]{2} \left(\cos \frac{-\frac{\pi}{4} + 2\pi k}{5} + i \sin \frac{-\frac{\pi}{4} + 2\pi k}{5} \right) \quad k = 0,1,2,3,4.$$

При
$$k = 0$$
 имеем $z_0 = \sqrt[5]{1 - i} = \sqrt[10]{2} \left(\cos \frac{\pi}{20} - i \sin \frac{\pi}{20} \right)$,

при
$$k = 1$$
 имеем $z_1 = \sqrt[5]{1-i} = \sqrt[10]{2} \left(\cos \frac{7\pi}{20} + i \sin \frac{7\pi}{20} \right)$

при
$$k=2$$
 имеем $z_2 = \sqrt[5]{1-i} = \sqrt[10]{2} \left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$

при
$$k = 3$$
 имеем $z_3 = \sqrt[5]{1-i} = \sqrt[10]{2} \left(\cos \frac{23\pi}{20} + i \sin \frac{23\pi}{20} \right)$,

при
$$k = 4$$
 имеем $z_4 = \sqrt[5]{1-i} = \sqrt[10]{2} \left(\cos \frac{31\pi}{20} + i \sin \frac{31\pi}{20} \right).$

Точки z_0 , z_1 , z_2 , z_3 , z_4 являются вершинами правильного пятиугольника, вписанного в окружность радиусом $\sqrt[10]{2} \approx 1,072$ с центром в начале координат (рисунок 3.3). Полярный угол точки z_0 равен $\varphi_0 = -\pi/20$, а полярные углы остальных точек получаются последовательным прибавлением угла $2\pi/5$ к φ_0 , т.е. $\varphi_k = \varphi_0 + \frac{2\pi k}{5}$ при k = 1,2,3,4.

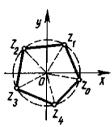


Рисунок 3.3 – Корни комплексного числа $\sqrt[5]{1-i}$

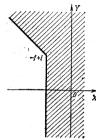


Рисунок 3.4 – Множество G

5 Изобразить на плоскости С множество

$$G = \left\{ z \in \mathbb{C} \left| -\frac{\pi}{2} \le \arg(z + 1 - i) \le \frac{3\pi}{4} \right\} \right\}.$$

P e u e + u e. Комплексное число $z_1 = z + 1 - i = z - (-1 + i)$ изображается вектором, началом которого является точка -1+i, а концом – точка z. Угол между этим вектором и осью Ox есть $\arg(z+1-i)$, и он меняется в пределах от $-\frac{\pi}{2}$ до $\frac{3\pi}{4}$. Следовательно, данное неравенство определяет угол между прямыми, выходящими из точки -1+i и образующими с осью Ox углы в $-\frac{\pi}{2}$ и $\frac{3\pi}{4}$. Данное множество G изображено на рисунке 3.4.

Задания для аудиторной работы

1 Найти $z_1 + z_2$; $z_1 - z_2$; $z_1 \cdot z_2$, z_1/z_2 для z_1 и z_2 :

a)
$$z_1 = 2 + 3i$$
; $z_2 = 3 - 5i$;

a)
$$z_1 = 2 + 3i$$
; $z_2 = 3 - 5i$;
B) $z_1 = 2 + i$; $z_2 = 1 - 2i$;

6)
$$z_1 = 5 - 2i$$
; $z_2 = 2 + 3i$;

6)
$$z_1 = 5 - 2i$$
; $z_2 = 2 + 3i$; $z_1 = \frac{-1 + i}{-1 - i}$; $z_2 = 2i$.

2 Вычислить:

a)
$$\frac{1}{i}$$
; 6) $\frac{1-i}{1+i}$; B) $\frac{2}{1-3i}$; Γ) $\frac{-2-i}{1+2i}$.

3 Представить в тригонометрической и показательной формах и изобразить числа на плоскости С комплексные числа:

a)
$$z = 3i$$
:

$$\Gamma$$
) $z = -3 - 3i$;

$$\delta$$
) $z =$

б)
$$z = -2$$
; д) $z = -1 + 2i$;

B)
$$z = 1 - i$$
;

e)
$$z = 1$$
.

4 Изобразить на комплексной плоскости С следующие множества:

a)
$$\{z \in \mathbb{C} \mid \operatorname{Re} z = \operatorname{Im} z\}$$
;

a)
$$\{z \in \mathbb{C} \mid \text{Re } z = \text{Im } z\}$$
; Γ) $\{z \in \mathbb{C} \mid |z-1-i| \le 4\}$;

$$\mathsf{G})\ \left\{\ z\in\mathbf{C}\ \middle|\ \mathsf{Re}\,z>0\ \right\}$$

б)
$$\left\{ z \in \mathbb{C} \left| \operatorname{Re} z > 0 \right. \right\};$$
 \qquad д) $\left\{ z \in \mathbb{C} \left| \frac{z-1}{z+1} \right| \le 1 \right. \right\};$

B)
$$\left\{ z \in \mathbb{C} \mid \arg z = \frac{\pi}{4} \right\}$$
; e) $\left\{ z \in \mathbb{C} \mid 0 \le \operatorname{Im} z \le 1 \right\}$.

e)
$$\{ z \in \mathbb{C} \mid 0 \le \operatorname{Im} z \le 1 \}$$

5 Вычислить:

а)
$$(1+i\sqrt{3})^3$$
; в) $(-1+i)^{10}$; д) $(\sqrt{2}+i\sqrt{2})^{25}$;

6)
$$(1-i)^{100}$$
; Γ) $\left(\frac{1}{2}-i\frac{\sqrt{3}}{2}\right)^{24}$; e) $(3+4i)^3$.

6 Найти все значения корня:

a)
$$\sqrt{\frac{1-i}{\sqrt{2}}}$$
; 6) $\sqrt[3]{-i}$; b) $\sqrt[4]{16}$; Γ) $\sqrt[3]{-1+i}$.

б)
$$\sqrt[3]{-i}$$

B)
$$\sqrt[4]{1}$$

$$\Gamma) \sqrt[3]{-1+i}$$

7 Найти действительные решения уравнения:

$$(3x-i)(2+i)+(x-iy)(1+2i)=5+6i$$
.

8 Найти все комплексные числа, удовлетворяющие уравнению: $\overline{z} = z^2$.

Задания для домашней работы

1 Для z_1 и z_2 найти $z_1 + z_2$; $z_1 - z_2$; $z_1 \cdot z_2$, z_1/z_2 .

a)
$$z_1 = 2i$$
; $z_2 = 1 - i$;

a)
$$z_1 = 2i$$
; $z_2 = 1 - i$;
b) $z_1 = -1 - i$; $z_2 = 2 - i$;
c) $z_1 = 5 - i$; $z_2 = 3i$;
e) $z_1 = 5 - i$; $z_2 = -1 + i$.

6)
$$z_1 = 5 - i$$
; $z_2 = 3i$;

$$z_1 = 5 - i$$
; $z_2 = -1 + i$

- 2. Выполнить действия:
- a) $\frac{3-i}{5i}$; 6) $\frac{2i}{1+i}$; B) $\frac{3}{2-i}$; Γ) $\frac{2-i}{3+4i}$.

- 3. Следующие комплексные числа представить в тригонометрической и показательной формах. Изобразить числа на плоскости.
 - a) z = ai; 6) z = b; B) z = 2 + 2i; r) z = -5 + 2i.
- 4 Какое множество точек на комплексной плоскости определяется условием:

- б) |z+2i|=2; д) $\operatorname{Re}\frac{z}{i}=0$. в) $\operatorname{Re}z>0$, $\operatorname{Im}z>0$, е) $\operatorname{Im}z\leq0$, $\operatorname{Re}z\geq1$.

- 5 Вычислить:
- a) $(2-2i)^7$; B) $\left(\frac{1-i}{\sqrt{2}}\right)^{80}$;
- 6) $\left(\sqrt{3}-3i\right)^6$; $\Gamma\left(\frac{1-i}{1+i}\right)^3$.
- 6 Найти все значения корня:
- a) $\sqrt[4]{1}$; 6) $\sqrt{2-2\sqrt{3}i}$; B) $\sqrt[4]{-i}$.
- 7. Найти действительные решения уравнения:

$$(x-iy)(1-2i)=i^5$$
.

- 8 Найти все комплексные числа, удовлетворяющие условию:

- a) z = |z|; 6) $\frac{1}{|z|} \ge 1$, $z \ne 0$; b) $\left| \frac{1}{z} \right| \le 2$, $z \ne 0$.