При $x \to 0$ функция $\frac{\arctan xy}{x\sqrt{1-x^2}} = o(1)$, при $x \to 1$ функция

$$\frac{\arctan xy}{x\sqrt{1-x^2}} = o\left(\frac{1}{\sqrt{1-x^2}}\right). \quad \Piоскольку \quad \frac{\partial f}{\partial y} = \frac{1}{\left(1+x^2y^2\right)\sqrt{1-x^2}}, \quad \text{то}$$

 $\frac{\partial f}{\partial y} < \frac{1}{\sqrt{1-x^2}}$. Значит, интеграл $\Phi(y) = \int_0^1 \frac{\arctan xy}{x\sqrt{1-x^2}} dx$ равномерно

сходится, и функция $\Phi(y)$ является дифференцируемой. По теореме 10 имеем

$$\Phi'(y) = \int_{0}^{1} \frac{dx}{(1+x^{2}y^{2})\sqrt{1-x^{2}}} = \begin{bmatrix} x = \sin t, \\ dx = \cos t \end{bmatrix} = \int_{0}^{\frac{\pi}{2}} \frac{dt}{1+y^{2}\sin^{2}t} =$$

$$= \begin{bmatrix} \operatorname{tg} t = z, \\ t = \operatorname{arctg} z \end{bmatrix} = \int_{0}^{+\infty} \frac{dz}{1+(1+y^{2})z^{2}} = \frac{1}{\sqrt{1+y^{2}}} \operatorname{arctg} \frac{z}{\sqrt{1+y^{2}}} \Big|_{0}^{+\infty} =$$

$$= \frac{\pi}{2\sqrt{1+y^{2}}}.$$

Тема 3-4 Интегралы Эйлера, интеграл Фурье

1 С помощью интегралов Эйлера вычислить интегралы:

a)
$$\int_{0}^{1} \sqrt{x - x^{2}} dx$$
;
B) $\int_{0}^{+\infty} \frac{x^{2}}{1 + x^{4}} dx$;
6) $\int_{0}^{\frac{\pi}{2}} \sin^{6} x \cos^{4} x dx$;
r) $\int_{0}^{1} \frac{dx}{\sqrt[n]{1 - x^{n}}}, n > 0$.

2 Найти область определения и выразить через интегралы Эйлера интегралы:

a)
$$\int_{0}^{1} \left(\ln \frac{1}{x} \right)^{p} dx$$
; 6) $\int_{0}^{+\infty} e^{-x^{n}} dx$, $n > 0$.

3 Найти синус- и косинус- преобразования Фурье функции $f(x) = e^{-2x}$, $x \ge 0$.

4 Найти преобразование Фурье функций:

Тогда
$$\iint_{G} (2x^{4} + 3x^{2}y^{2} - y^{4}) dxdy =$$

$$= \iint_{G^{*}} (2r^{4} \cos^{4} \varphi + 3r^{4} \cos^{2} \varphi \sin^{2} \varphi - r^{4} \sin^{4} \varphi) r dr d\varphi =$$

$$= \iint_{G^{*}} r^{5} (2 \cos^{4} \varphi + 3 \cos^{2} \varphi \sin^{2} \varphi - \sin^{4} \varphi) dr d\varphi =$$

$$= \int_{0}^{\sqrt{2}} r^{5} dr \int_{0}^{2\pi} \left(2 \left(\frac{1 + \cos 2\varphi}{2} \right)^{2} + \frac{3}{4} \sin^{2} 2\varphi - \left(\frac{1 - \cos 2\varphi}{2} \right)^{2} \right) d\varphi =$$

$$= \frac{r^{6}}{6} \Big|_{0}^{\sqrt{2}} \int_{0}^{2\pi} \left(\frac{1 + 2 \cos 2\varphi + \cos^{2} 2\varphi}{2} + \frac{3(1 - \cos 4\varphi)}{8} - \frac{1 - 2 \cos 2\varphi + \cos^{2} 2\varphi}{4} \right) d\varphi =$$

$$= \frac{4}{3} \int_{0}^{2\pi} \left(\frac{1}{2} + \cos 2\varphi + \frac{1 + \cos 4\varphi}{4} + \frac{3}{8} - \frac{3 \cos 4\varphi}{8} - \frac{1}{4} + \frac{1}{2} \cos 2\varphi - \frac{1 + \cos 4\varphi}{8} \right) d\varphi =$$

$$= \frac{4}{3} \int_{0}^{2\pi} \left(\frac{3}{4} + \frac{3}{2} \cos 2\varphi - \frac{1}{4} \cos 4\varphi \right) d\varphi =$$

$$= \frac{4}{3} \left(\frac{3}{4} \varphi + \frac{3}{4} \sin 2\varphi - \frac{1}{16} \sin 4\varphi \right) \Big|_{0}^{2\pi} = 2\pi .$$

6 Вычислить $\iint_{\Omega} x^2 dy dz + y^2 dx dz + z^2 dx dy$, где поверхность Ω есть внешняя сторона сферы $x^2 + y^2 + z^2 = 16$, лежащая в первом октанте.

 $P\,e\,w\,e\,h\,u\,e$. Поверхность задана неявно уравнением $F\left(x,y,z\right)=0$, $F_z'\neq 0$ $z\geq 0$. По условию, нормаль к внешней стороне образует угол $\gamma<\frac{\pi}{2}$:

$$\vec{n} = \frac{1}{F_z'} (F_x', F_y', F_z') = \frac{1}{2z} (2x, 2y, 2z) = \left(\frac{x}{z}, \frac{y}{z}, 1\right);$$

при этом $z = \sqrt{16 - x^2 - y^2}$.

Тогда получим

$$\iint_{\Omega} x^2 dy dz + y^2 dx dz + z^2 dx dy = \iint_{G} \left(x^2 \cdot \frac{x}{z} + y^2 \cdot \frac{y}{z} + z^2 \right) dx dy =$$

$$= \iint_G \left(\frac{1}{z} (x^3 + y^3) + z^2 \right) dx dy = \iint_G \left(\frac{x^3 + y^3}{\sqrt{16 - x^2 - y^2}} + 16 - x^2 - y^2 \right) dx dy.$$

Область G — часть круга, лежащая в первой четверти: $x^2+y^2\leq 16$, так как по условию $x\geq 0$, $y\geq 0$. Перейдем к полярным координатам:

$$x = r\cos\varphi$$
, $y = r\sin\varphi$, $0 \le r \le 4$, $0 \le \varphi \le \frac{\pi}{2}$,

якобиан отображения есть J=r.

Тогда

$$I = \iint_{G^*} r \left(\frac{r^3 \cos^3 \varphi + r^3 \sin^3 \varphi}{\sqrt{16 - r^2}} + 16 - r^2 \right) dr d\varphi =$$

$$= \iint_{G^*} \left(\frac{r^4}{\sqrt{16 - r^2}} \left(\cos^3 \varphi + \sin^3 \varphi \right) + 16r - r^3 \right) dr d\varphi =$$

$$= \int_{0}^{\frac{\pi}{2}} \left(\cos^3 \varphi + \sin^3 \varphi \right) d\varphi \int_{0}^{4} \frac{r^4}{\sqrt{16 - r^2}} dr + \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{4} r \left(16 - r^2 \right) dr =$$

$$= \left(\int_{0}^{\frac{\pi}{2}} (1 - \sin^2 \varphi) d \sin \varphi - \int_{0}^{\frac{\pi}{2}} (1 - \cos^2 \varphi) d \cos \varphi \right) \int_{0}^{4} \frac{r^4 dr}{\sqrt{16 - r^2}} +$$

$$+ \frac{\pi}{2} \left(\frac{16r^2}{2} - \frac{r^4}{4} \right) \Big|_{0}^{4} = \left[r = 4 \sin t \right]_{0}^{4} dr + \left[r = 4 \cos t dt \right]_{0}^{4$$

Умножая это равенство на e^{-y^2} и интегрируя его от 0 до $+\infty$ по y , получаем

$$I^2 = \int\limits_0^{+\infty} I \cdot e^{-y^2} dy = \int\limits_0^{+\infty} dy \int\limits_0^{+\infty} y e^{-y^2 \left(1 + x^2\right)} dx \; .$$
 Так как $\left| y e^{-y^2 \left(1 + x^2\right)} \right| \leq d e^{-c^2 \left(1 + x^2\right)}$ и интеграл $\int\limits_0^{+\infty} \left(d e^{-c^2 \left(1 + x^2\right)} \right) dx$ сходится, то интеграл $\int\limits_0^{+\infty} y e^{-y^2 \left(1 + x^2\right)} dx$ сходится равномерно по

параметру y на любом отрезке [c;d] \subset $(0;+\infty)$ согласно признаку Вейерштрасса.

Аналогично доказывается, что интеграл $\int_0^{+\infty} y e^{-y^2(1+x^2)} dy$ сходится равномерно по параметру x на любом отрезке $[a;b] \subset (0;+\infty)$. Следовательно, повторный интеграл $\int_0^{+\infty} dx \int_0^{+\infty} y e^{-y^2(1+x^2)} dy$ сходится и справедлива изменение порядка интегрирования:

$$I^2 = \int\limits_0^{+\infty} dx \int\limits_0^{+\infty} y e^{-y^2 \left(1+x^2\right)} dy = -\int\limits_0^{+\infty} \left(\frac{e^{-y^2 \left(1+x^2\right)}}{2 \left(1+x^2\right)} \right|_0^{+\infty} \right) dx = \frac{1}{2} \int\limits_0^{+\infty} \frac{1}{1+x^2} dx = \frac{\pi}{4} \ .$$
 Отсюда $I = \int\limits_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$

7 Вычислить интеграл $\int_{0}^{1} \frac{\arctan xy}{x\sqrt{1-x^2}} dx$.

 $Pe\, w\, e\, h\, u\, e$. Рассмотрим функцию $f\left(x;y\right) = \frac{\mathrm{arctg}\, xy}{x\sqrt{1-x^2}}$.

Интеграл $\Phi(y) = \int_0^1 \frac{\arctan xy}{x\sqrt{1-x^2}} dx$ является несобственным, так как функция f(x; y) не определена в точках x = 0 и x = 1.

б) для подынтегральной функции $f(x;y) = \frac{1}{x^2 + y^2 + 1}$

рассмотрим функцию $g(x) = \frac{1}{x^2 + 1}$, для которой

$$f(x;y) = \frac{1}{x^2 + y^2 + 1} \le \frac{1}{x^2 + 1} = g(x).$$

Интеграл $\int_0^{+\infty} \frac{dx}{x^2 + 1} = \frac{\pi}{2}$ и является сходящимся для всех $x \in [0; +\infty)$.

Тогда интеграл $\int_0^{+\infty} \frac{dx}{x^2 + y^2 + 1}$ сходится равномерно согласно признаку Вейерштрасса.

5 Исследовать на равномерную сходимость интеграл

$$\int_{0}^{+\infty} e^{-xy} \frac{\sin x}{x} dx , y \in [0; +\infty).$$

 $Pe \, me \, nue \, . \, \Pi y$ сть $f(x;y) = \sin x \, , \, g(x;y) = \frac{e^{-xy}}{x} \, .$

Функция $\sin x$ имеет ограниченную первообразную

$$F(x) = -\cos x$$
.

При $x \ge 1$, $y \ge 0$ для функции $g(x;y) = \frac{e^{-xy}}{x}$ выполнены следующие неравенства:

$$\frac{\partial}{\partial x} \left(\frac{e^{-xy}}{x} \right) = -\frac{e^{-xy}}{x^2} \left(1 + xy \right) < 0 , \qquad \frac{e^{-xy}}{x} < \frac{1}{x} = \psi \left(x \right) ,$$

и $\lim_{x\to +\infty}\frac{1}{x}=0$. Значит, согласно признаку Дирихле, данный интеграл сходится равномерно по параметру y на множестве $Y=\begin{bmatrix}0;+\infty\end{pmatrix}$.

6 Вычислить интеграл Пуассона $I = \int_0^{+\infty} e^{-t^2} dt$.

Решение. Имеем

$$I = \int_{0}^{+\infty} e^{-t^{2}} dt = \begin{bmatrix} t = xy, y > 0, \\ dt = ydx \end{bmatrix} = y \int_{0}^{+\infty} e^{-x^{2}y^{2}} dx.$$

$$= \left(\frac{2}{3} + \frac{2}{3}\right) \cdot 64 \int_{0}^{\frac{\pi}{2}} (1 - \cos 2t)^{2} dt + 32\pi = \frac{4 \cdot 64}{3} \int_{0}^{\frac{\pi}{2}} (1 - 2\cos 2t + \cos^{2} 2t) dt +$$

$$+32\pi = \frac{256}{3} \int_{0}^{\frac{\pi}{2}} \left(1 - 2\cos 2t + \frac{1}{2} + \frac{1}{2}\cos 4t\right) dt + 32\pi =$$

$$= \frac{256}{3} \left(\frac{3}{2}t - \sin 2t + \frac{1}{8}\sin 4t\right) \Big|_{0}^{\frac{\pi}{2}} + 32\pi =$$

$$= \frac{256}{3} \cdot \frac{3\pi}{4} + 32\pi = 64\pi + 32\pi = 96\pi.$$

7 Вычислить $\iint\limits_{\Omega}xdydz+\big(y+z\big)dzdx+\big(z-y\big)dxdy\;, \quad \text{где}$ поверхность Ω есть внешняя сторона верхней полусферы $x^2+y^2+z^2=9$.

 $Pe\,w\,e\,H\,u\,e\,$. Зададим поверхность Ω параметрическими уравнениями

$$x = 3zin\theta\cos\varphi$$
, $y = 3\sin\theta\sin\varphi$, $z = 3\cos\theta$,

где
$$0 \le \theta \le \frac{\pi}{2}$$
, $0 \le \varphi \le 2\pi$.

Имеем:

$$\left| \frac{D(y,z)}{D(\theta,\varphi)} \right| = 9\sin^2\theta\cos\varphi;$$

$$\left| \frac{D(z,x)}{D(\theta,\varphi)} \right| = 9\sin^2\theta\sin\varphi;$$

$$\left| \frac{D(x,y)}{D(\theta,\varphi)} \right| = 9\cos\theta\sin\theta.$$

Тогда получим

$$\iint_{\Omega} x dy dz + (y+z) dz dx + (z-y) dx dy = \int_{0}^{2\pi} d\varphi \int_{0}^{\frac{\pi}{2}} (3\sin\theta\cos\varphi \cdot \sin^{2}\theta\cos\varphi + (3\sin\theta\sin\varphi + 3\cos\theta)9\sin^{2}\theta\sin\varphi + (3\cos\theta - 3\sin\theta\sin\varphi)9\cos\theta\sin\theta)d\theta =$$

$$= 27 \int_{0}^{2\pi} d\varphi \int_{0}^{\frac{\pi}{2}} (\sin^{3}\theta + \cos^{2}\theta \sin\theta) d\theta =$$

$$= 27 \cdot 2\pi \int_{0}^{\frac{\pi}{2}} \sin\theta d\theta = 54\pi (1 - \cos\theta) \Big|_{0}^{\frac{\pi}{2}} = 54\pi \cdot 1 = 54\pi.$$

8 Вычислить интеграл $\iint_{\Omega} x dy dz + y dz dx + z dx dy$ по верхней стороне плоскости x+z-1=0, отсеченной плоскостями y=0 и y=4 и лежащей в первом октанте (рисунок 2. 16).

Решение. По определению

$$\iint\limits_{\Omega} x dy dz + y dz dx + z dx dy = \pm \iint\limits_{G_{yx}} x dy dz \pm \iint\limits_{G_{yy}} y dz dx \pm \iint\limits_{G_{yy}} z dx dy \ .$$

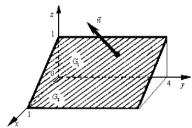


Рисунок 2. 16 – Поверхность интегрирования к типовому примеру 8

Найдем значения направляющих косинусов

$$\cos \alpha = \frac{1}{\sqrt{1^2 + 0^2 + 1^2}} = \frac{1}{\sqrt{2}} > 0;$$

$$\cos \beta = \frac{0}{\sqrt{1^2 + 0^2 + 1^2}} = 0;$$

$$\cos \gamma = \frac{1}{\sqrt{1^2 + 0^2 + 1^2}} = \frac{1}{\sqrt{2}} > 0.$$

Интеграл $\iint\limits_{G_{\pi}}ydzdx=0$, так как плоскость Ω параллельна оси

Oy (нормаль и ось Oy перпендикулярны), первый и третий интегралы нужно взять со знаком "+".

Тогда находим

$$= \int_{b',v}^{+\infty} e^{-t} dt = \int_{1}^{+\infty} e^{-t} dt = e^{-1} = \varepsilon.$$

Следовательно, интеграл $\int\limits_{0}^{+\infty} y e^{-xy} dx$ сходится неравномерно по параметру y на множестве $Y = [0; +\infty)$.

4 Исследовать на равномерную сходимость интегралы

а)
$$\int_{0}^{+\infty} e^{-\alpha x^2} dx$$
 при $\alpha \in [\alpha_0; +\infty)$, $\alpha_0 > 0$ и $\alpha \in [0; +\infty)$;

6)
$$\int_{0}^{+\infty} \frac{dx}{x^2 + y^2 + 1}, y \in \mathbb{R}.$$

 $P\,e\,w\,e\,h\,u\,e$. a) пусть $lpha\in \left[lpha_0;+\infty
ight)$. Так как $e^{-lpha x^2}\leq e^{-lpha_0 x^2}$ и $\int\limits_0^{+\infty}e^{-lpha_0 x^2}dx$ сходится, то по признаку Вейерштрасса интеграл $\int\limits_0^{+\infty}e^{-lpha x^2}dx$ сходится равномерно по параметру lpha на $\left[lpha_0;+\infty
ight)$.

Пусть $\alpha \in (0; +\infty)$. Покажем, что на $(0; +\infty)$ интеграл $\int\limits_0^\infty e^{-\alpha x^2} dx$ сходится неравномерно. Воспользуемся следствием из критерия Коши. Возьмем $\varepsilon = \frac{1}{e}$, $\forall \ b > 0$ возьмем $\eta_0 = b$, $\eta_0' = b + 1$, $\alpha_0 = \frac{1}{\left(b+1\right)^2}$. Тогда

$$\int_{\eta_0}^{\eta_0} \varepsilon^{-\alpha_0 x^2} dx = \int_{b}^{b+1} e^{-\alpha_0 x^2} dx \ge e^{-\alpha_0 (b+1)^2} \int_{b}^{b+1} dx = \frac{1}{e} = \varepsilon_0.$$

Следовательно, интеграл $\int_{0}^{+\infty} e^{-\alpha x^{2}} dx$ сходится неравномерно по параметру α на множестве $[\alpha_{0}; +\infty)$;

Решение. Имеем:

$$\Phi'(y) = \int_{0}^{y} (2y + x) dx + (y^{2} + y^{2} + y^{2}) \cdot 1 - (y^{2}) \cdot 0 =$$

$$= \left(2xy - \frac{x^{2}}{2}\right)\Big|_{0}^{y} + 3y^{2} = 2y^{2} + \frac{y^{2}}{2} + 3y^{2} = 5,5y^{2}.$$

2 Исследовать на равномерную сходимость интеграл

$$\int_{0}^{+\infty} e^{-x} \cos xy dx \, , \ y \in \mathbb{R}.$$

 $Pe\, w\, e\, H\, u\, e$. Возьмем $\forall \, \varepsilon > 0$. Покажем, что существует $b' = b' (\, y; \varepsilon \,)$.

Имеем

$$\left| \int_{\eta}^{+\infty} e^{-x} \cos xy dx \right| \le \int_{\eta}^{+\infty} e^{-x} dx = e^{-\eta} \le \frac{\varepsilon}{2} < \varepsilon.$$

Положим $b'(y;\varepsilon)=\ln\frac{2}{\varepsilon}$. Тогда $\forall \ \eta\in [b';+\infty)$ выполняется неравенство

$$\left| \int_{\eta}^{+\infty} e^{-x} \cos xy dx \right| < \varepsilon .$$

Согласно определению, интеграл сходится равномерно по параметру v на \mathbb{R} .

3 Исследовать на равномерную сходимость интеграл

$$\int_{0}^{+\infty} y e^{-xy} dx , y \in [0; +\infty).$$

 $Pe\, w\, e\, h\, u\, e$. Покажем, что определение равномерной сходимости не выполняется. Возьмем $\varepsilon=\frac{1}{e}$. Тогда $\forall b'\in (0;+\infty)$

$$\exists \eta = b'$$
 и $y = \frac{1}{b'}$ такие, что

$$\int_{\eta}^{+\infty} y e^{-xy} dx = \int_{b'}^{+\infty} y e^{-xy} dx = \begin{bmatrix} t = xy, \ y = \frac{t}{x}, \\ x = \frac{t}{y}, dx = dt \end{bmatrix} =$$

Тема 14 Формула Остроградского-Гаусса, формула Стокса

1 По внешней стороне замкнутой поверхности Ω тела Q, заданного неравенствами $x^2+y^2 \le z^2$, $0 \le z \le 1$, вычислить интеграл $\iint_{\Omega} x^2 z dy dz + y dz dx + z dx dy$.

2 Вычислить $\iint_{\Omega} x dy dz + y dz dx + z dx dy$, где Ω – внешняя сторона поверхности $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

3 Вычислить $\iint_{\Gamma} (x+3y+2z) dx + (2x+z) dy + (x-y) dz$, где Γ – контур ΔABC с вершинами A(2,0,0), B(0,3,0), C(0,0,1) в положительном направлении.

5 Вычислить $\iint_{\Gamma} 2(x^2+y^2)dx + (x+y)^2 dy$, где Γ – контур ΔABC : A(1;1), B(2;2), C(1;3), пробегаемый в положительном направлении.

6 Вычислить $\iint_{\Omega} x^2 dy dz + y^2 dz dx + z^2 dx dy$, где Ω – внешняя полная поверхность конуса $\frac{x^2}{4} + \frac{y^2}{4} + \frac{z^2}{9} = 0$ $\left(0 \le z \le 3\right)$.

7 Вычислить $\iint_{\Omega} x^3 dy dz + y^3 dx dz + z^3 dx dy$, где Ω – внешняя сторона сферы $x^2 + y^2 + z^2 = 25$.

8 Вычислить $\iint_{\Gamma} y^2 dx - x^2 dy + z^2 dz$, где Γ – линия пересечения параболоида $x^2 + z^2 = 1 - y$ с координатными плоскостями.

9 Вычислить $\iint_{\Gamma} (y+z) dx + (z+x) dy + (x+y) dz$, где Γ – окружность $x^2 + y^2 + z^2 = 9$, x+y+z=0.

Примеры оформления решения

1 Вычислить интеграл $\iint_{\Omega} x dy dz + y dz dx + z dx dy$, где поверхность Ω есть внешняя сторона пирамиды, ограниченной плоскостями x+y+z-1=0, x=0, y=0, z=0 (рисунок 2. 17).

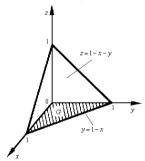


Рисунок 2. 17 – Поверхность интегрирования к типовому примеру 1

 $Pe\ ue\ hue$. Используя формулу Остроградского-Гаусса, имеем $\iint_{\Omega} x dy dz + y dz dx + z dx dy = \iiint_{V} (1+1+1) dx dy dz = 3 \iiint_{V} dx dy dz =$ $= 3 \int_{0}^{1} dx \int_{0}^{1-x} dy \int_{0}^{1-x-y} dz = 3 \int_{0}^{1} dx \int_{0}^{1-x} \left(z\Big|_{0}^{1-x-y}\right) dy = 3 \int_{0}^{1} \left(y - xy - \frac{y^{2}}{2}\Big|_{0}^{1-x}\right) dx =$ $= 3 \int_{0}^{1} \left(1 - x - x(1-x) - \frac{(1-x)^{2}}{2}\right) dx - 3 \cdot \frac{1}{2} - \frac{1}{2}$

$$=3\int_{0}^{1} \left(1-x-x(1-x)-\frac{(1-x)^{2}}{2}\right) dx = 3\cdot\frac{1}{6} = \frac{1}{2}.$$

2 Вычислить

Тема 1-3 Собственные и несобственный интегралы, зависящие от параметра,

1 Найти производные функций:

a)
$$F(x) = \int_{x}^{x^{2}} e^{-xy^{2}} dy$$
;
B) $F(x) = \int_{0}^{x} (x+y) f(y) dy$;

6)
$$F(\alpha) = \int_{a+\alpha}^{x} \frac{\sin \alpha x}{x} dx$$
; $F(\alpha) = \int_{0}^{\alpha} f(\alpha x) dx$.

2 Вычислить интегралы

а)
$$\int_{0}^{1} \frac{x^{b} - x^{a}}{\ln x} dx$$
, $a > 0$, $b > 0$, если $\frac{x^{b} - x^{a}}{\ln x} = \int_{a}^{b} x^{y} dy$;

$$6) \int_{0}^{+\infty} e^{-ax^2} \cos bx \, dx.$$

3 Исследовать равномерную сходимость интеграла

$$\int_{-\infty}^{+\infty} \frac{\cos \alpha x}{1+x^2} dx \, , \, -\infty < x < +\infty \, .$$

4 Вычислить несобственные интегралы, зависящие от параметра:

a)
$$\int_{0}^{+\infty} \frac{\cos ax \cos bx}{x} dx$$
, $a > 0$, $b > 0$;

6)
$$\int_{-\infty}^{+\infty} e^{-(ax^2+2bx+c)} dx, \ a>0, \ ac-b^2>0;$$

$$\mathrm{B)} \int_{0}^{+\infty} \frac{\sin ax \sin bx}{x} dx \; ;$$

$$\Gamma) \int_{0}^{+\infty} \frac{e^{-\alpha x^{2}} - \cos \beta x}{x^{2}} dx, \ \alpha > 0.$$

Примеры оформления решения 1 Найти производную функции

$$\Phi(y) = \int_{0}^{y} (x^2 + y^2 + xy) dx.$$

$$C = \iint_{\Omega} (\operatorname{rot} \vec{a} \cdot \vec{n}) dS = \iint_{\Omega} (2x - 1) \cos \gamma \, dS = \iint_{G_{vv}} (2x - 1) \, dx \, dy =$$

$$= \begin{bmatrix} x = r \cos \varphi, \\ y = r \sin \varphi, \ J = r, \\ 0 \le r \le 2, \ 0 \le \varphi \le 2\pi \end{bmatrix} = \int_{0}^{2\pi} d\varphi \int_{0}^{2} r(2r \cos \varphi - 1) dr = -4\pi.$$

11 Проверить, является ли потенциальным векторное поле

$$\vec{a} = 2xyz \cdot \vec{i} + +x^2z \cdot \vec{j} + x^2y \cdot \vec{k} .$$

Решение. Ротор равен

$$\operatorname{rot} \vec{a} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2xyz & x^2z & x^2y \end{vmatrix} = (x^2 - x^2)\vec{i} + (2xy - 2xy)\vec{j} + (2xz - 2xz)\vec{k} \equiv 0.$$

Следовательно, заданное поле потенциально.

12 Проверить, являются ли соленоидальными следующие поля:

a)
$$\vec{a}_1 = x(z^2 - y^2) \cdot \vec{i} + y(x^2 - z^2) \cdot \vec{j} + z(y^2 - x^2) \cdot \vec{k}$$
;

6)
$$\vec{a}_2 = y^2 \cdot \vec{i} - (x^2 + y^2) \cdot \vec{j} + z(3y^2 + 1) \cdot \vec{k}$$
.

Решение. а) имеем

$$\operatorname{div} \vec{a}_1 = z^2 - y^2 + x^2 - z^2 + y^2 - x^2 \equiv 0.$$

Значит, поле $\vec{a}_1(M)$ соленоидально;

б) имеем

$$\operatorname{div} \vec{a}_2 = -2y + 3y^2 + 1 \not\equiv 0.$$

Значит, поле $\vec{a}_{2}(M)$ не является соленоидальным.

$$I = \iint_{\Omega} \left(e^{2y} + x\right) dydz + \left(x - 2y\right) dzdx + \left(y^2 + 3z\right) dxdy,$$

где Ω – внешняя сторона поверхности шара

$$(x-1)^2 + y^2 + (z+5)^2 = 9$$

Решение. Имеем:

$$P(x,y,z) = e^{2y} + x$$
; $Q(x,y,z) = x - 2y$; $R(x,y,z) = y^2 + 3z$

Отсюда

$$\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = 1 - 2 + 3 = 2.$$

По формуле Остроградского-Гаусса получим

$$I = 2 \iiint_{\Omega} dx dy dz = 2 \cdot \frac{4}{3} \pi \cdot 3^3 = 72\pi ,$$

так как $\iiint\limits_{\mathcal{O}} dx dy dz$ численно равен объему шара радиуса $\mathit{R} = 3$.

3 Вычислить интеграл $\iint_{\Gamma} x^2 y^3 dx + dy + z dz$, используя формулу

Стокса, где

$$\Gamma = \{ (x; y; z) | x^2 + y^2 = R^2, z = 0 \},$$

взяв в качестве поверхности полусферу (рисунок 2. 18)

$$\Omega = \left\{ (x, y, z) \middle| z = +\sqrt{R^2 - x^2 - y^2} \right\}.$$

Решение. Так как

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = -3x^2y^2, \ \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} = 0, \ \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} = 0,$$

по формуле Стокса, получаем

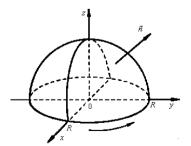


Рисунок 2. 18 – Поверхность интегрирования к типовому примеру 3

$$\iint_{\Gamma^+} x^2 y^3 dx + dy + z dz = -3 \iint_{\Omega^+} x^2 y^2 dx dy = -3 \iint_{G} x^2 y^2 dx dy =$$

$$= \begin{bmatrix} x = r \cos \varphi, \\ y = r \sin \varphi, \\ 0 \le r \le R, 0 \le \varphi \le 2\pi, \end{bmatrix} = -3 \int_{0}^{2\pi} d\varphi \int_{0}^{R} r^5 \sin^2 \varphi \cdot \cos^2 \varphi dr =$$

$$= -3 \int_{0}^{2\pi} \sin^2 \varphi \cdot \cos^2 \varphi d\varphi \int_{0}^{R} r^5 dr = -\frac{R^6}{2} \cdot \frac{1}{4} \int_{0}^{2\pi} \sin^2 2\varphi d\varphi =$$

$$= -\frac{R^6}{8} \cdot \frac{1}{2} \int_{0}^{2\pi} (1 - \cos 4\varphi) d\varphi = -\frac{R^6}{16} \varphi \Big|_{0}^{2\pi} + 0 = -\frac{\pi R^6}{8}.$$

4 Вычислить

$$I = \iint_{\Gamma} (x+y)dx + (x-z)dy + (y+z)dz$$

по контуру, где A(1,0,0), B(0,1,0), C(0,0,1)

Решение. Имеем

$$P = x + y$$
, $Q = x - z$, $R = y + z$.

Тогда по формуле Стокса получим

$$I = \iint_{\Omega} (1+1) dy dz + (0-0) dz dx + (1-1) dx dy =$$

$$= \iint_{\Omega} 2 dt dz = 2 \iint_{\Omega} dy dz = 2 \cdot \frac{1}{2} = 1.$$

где G — плоскость ΔABC (внешняя сторона); это плоскость, отсекающая на осях координат отрезки длины единицы. Так как нормаль к внешней стороне плоскости образует с осью Ox угол

 $\alpha < \frac{\pi}{2}$, то по правилу вычисления поверхностных интегралов 2-го рода можно записать:

$$\iint_{\Omega} dydz = \iint_{\Omega} dydz.$$

Имеем $\iint_D dydz = S$, где D – треугольник прямоугольный в

плоскости x=0 с катетами длины 1 (D – проекция плоскости ΔABC на плоскость x=0), а S – площадь этого треугольника

$$S = \frac{1}{2} \cdot 1 \cdot 1 = \frac{1}{2} .$$

по формуле (8.16) имеем

$$\operatorname{rot} \vec{a} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 + y^2 & y^2 + z^2 & x^2 + z^2 \end{vmatrix} =$$

$$= -2z \cdot \vec{i} - 2x \cdot \vec{j} - 2y \cdot \vec{k} = -2\left(z \cdot \vec{i} + x \cdot \vec{j} + y \cdot \vec{k}\right).$$

10 Вычислить с помощью формулы Стокса циркуляцию векторного поля $a=y\cdot\vec{i}+x^2\cdot\vec{j}+z\cdot\vec{k}$ по линии Γ , являющейся пересечением поверхностей $x^2+y^2=4$ и z=3.

Pewehue. Линия Γ представляет собой окружность радиусом 2 с центром в точке (0;0;3), лежащую в плоскости (рисунок 2. 22).

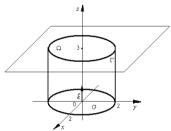


Рисунок 2. 22 – Поверхность к типовому примеру 10

Параметрические уравнения линии Г имеют вид

$$x = 2\cos t$$
, $y = 2\sin t$, $z = 3$, $t \in [0; 2\pi]$.

Для вычисления циркуляции по формуле Стокса выберем какую-нибудь поверхность Ω , «натянутую» на Γ . Возьмем в качестве Ω круг, границей которого является окружность Γ . Согласно выбранной ориентации контура, нормалью \vec{n} к кругу Ω является единичный вектор \vec{k} оси Oz.

Ротор равен

$$\operatorname{rot} \vec{a} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & x^{2} & -z \end{vmatrix} = (2x-1) \cdot \vec{k} .$$

Тогда по формуле Стокса циркуляция равна

$$\vec{a} \cdot \vec{n}_2 = 1$$
.

Тогда поток через внешнюю сторону поверхности $z = 1 - x^2 - y^2$, расположенную над плоскостью Охуг равен

$$\prod_{1} = -\iint_{\Omega_2} dS = -\pi \cdot 1^2 = -\pi .$$

8 Найти циркуляцию векторного поля

$$\vec{a} = xy \cdot \vec{i} + yz \cdot \vec{j} + xz \cdot \vec{k}$$

вдоль линии Γ , являющейся пересечением цилиндра $x^2 + y^2 = 1$ и плоскости x + v + z = 1.

Решение. Линия Г представляет собой эллипс. Параметрические уравнения Γ можно получить с учетом того, что все точки Γ проектируются на плоскость Oxy в окружность $x^{2} + y^{2} = 1$, параметрические уравнения которой есть

$$x = \cos t , \ y = \sin t , \ t \in [0; 2\pi],$$

и те же точки линии Γ лежат на плоскости z = 1 - x - y.

Следовательно, параметрические уравнения Г имеют вид:

$$x = \cos t$$
, $y = \sin t$, $z = 1 - \sin t - \cos t$,

где $t \in [0; 2\pi]$.

Тогда

$$dx = -\sin t dt$$
, $dy = \cos t dt$, $dz = (-\cos t + \sin t) dt$.

Согласно формуле (8.14), циркуляция равна

$$C = \iint_{\Gamma} \vec{a} \cdot d\vec{r} = \iint_{\Gamma} Xdx + Ydy + Zdz = \iint_{\Gamma} xydx + yzdy + xzdz =$$

$$= \int_{0}^{2\pi} \left(-\sin^2 t \cos t + \sin t \cos t \left(1 - \cos t - \sin t\right) + \right)$$

$$+\cos t (1-\cos t - \sin t)(\sin t - \cos t)dt = -\pi.$$

9 Найти ротор векторного поля

$$\vec{a} = (x^2 + y^2)\vec{i} + (y^2 + z^2)\vec{j} + (z^2 + x^2)\vec{k}$$

в произвольной точке.

Pe ue нue. Заданное поле $\vec{a}(x; y; z)$ определено и непрерывно-дифференцируемо на всем пространстве \mathbb{R}^3 . Для координатных функций

$$X = x^2 + y^2$$
, $Y = y^2 + z^2$, $Z = z^2 + x^2$

Тема 15-17 Скалярные и векторные поля

1 Найти линии и поверхности уровня скалярных полей:

a) U = xv;

- B) U = x y z;

6)
$$U = \frac{2x}{x^2 + y^2}$$
; $U = \sqrt{x^2 + y^2 + z^2}$.

2 Найти производную в точке M по заданному направлению $\overrightarrow{MM_1}$ скалярных полей:

a)
$$U = y^3 + 4xy^2 - 3x + 6y - 1$$
, $M(2;1;0)$, $M_1(-1;5;0)$;

6)
$$U = x^3 + y^3 + z^3 + xyz$$
, $M(1;1;1)$, $M_1(-1;0;3)$.

3 Найти градиент и его модуль скалярных полей:

$$6) U = xyze^{x+y+z}.$$

4 Найти векторные линии векторных полей:

a)
$$\vec{a} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$$
;

б)
$$\vec{a} = x\vec{i} + y\vec{j}$$
.

5 Найти поток векторного поля

$$\vec{a} = (y - x)\vec{i} + (x + y)\vec{j} + y\vec{k}$$

через сторону треугольника Ω , вырезанного из плоскости x + v + z - 1 = 0 координатными плоскостями.

6 Найти поток векторного поля $\vec{a} = y\vec{i} + x\vec{j} + z^2\vec{k}$ через поверхность части параболоида $1-z=x^2+y^2$, отсекаемой от него плоскостью z = 0 (нормаль внешняя).

7 Вычислить поток для векторных полей \vec{a} и положительно ориентированных замкнутых поверхностей Ω :

a)
$$\vec{a} = z^2 \vec{i} + (xy - 1) \vec{j} - (z - y) \vec{k}$$
,

$$\Omega = \{3x + 2y + z = 6, x \ge 0, y \ge 0, z \ge 0\};$$

6)
$$\vec{a} = (y^2 + xz)\vec{i} + (yx - z)\vec{j} + (yz + x)\vec{k}$$

$$\Omega = \left\{ x^2 + y^2 = 1, z = 0, z = \sqrt{2} \right\}.$$

8 Найти поток векторного поля

$$\vec{a} = (x - y)\vec{i} + (x + y)\vec{j} + z^2\vec{k}$$

через поверхность цилиндра, заключенную между плоскостями z = 0 и z = 2 (нормаль внешняя).

9 Найти дивергенцию векторных полей:

a)
$$\vec{a} = (x^2 - y^2)\vec{i} + (x^3 + y^3)\vec{j}$$
;

6)
$$\vec{a} = xyz\vec{i} + (2x+3y+z)\vec{j} + (x^2+z^2)\vec{k}$$
.

10 Найти ротор векторных полей:

a)
$$\vec{a} = xyz\vec{i} + (2x+3y-z)\vec{j} + (x^2+z^2)\vec{k}$$
;

6)
$$\vec{a} = (2x - y + 5z)\vec{i} + (x^2 + y^2 - 8z^2)\vec{j} + (x^3 - y^3 + 2z^3)\vec{k}$$

11 Вычислить циркуляцию векторного поля

$$\vec{a} = (z^2 - y^2)\vec{i} + (x^2 - z^2)\vec{j} + (y^2 - x^2)\vec{k}$$

по контуру треугольника с вершинами (1;0;0), (0;1;0), (0;0;1) по определению и с помощью формулы Стокса.

12 Вычислить циркуляцию векторного поля

$$\vec{a} = (x - y)\vec{i} + (y - z)\vec{j} + (z - x)\vec{k}$$

вдоль линии, состоящей из части винтовой линии $x = a \cos t$,

$$y=a\sin t$$
, $z=rac{bt}{2\pi}$ от точки $Aig(a;0;0ig)$ до точки $Big(a;0;big)$ и

прямолинейного отрезка BA по определению и с помощью формулы Стокса.

13 Выяснить, являются ли соленоидальными и потенциальными векторные поля:

a)
$$\vec{a} = x^2 z \vec{i} + y^2 \vec{j} - x z^2 \vec{k}$$
;

6)
$$\vec{a} = y^2 z \vec{i} + x z^2 \vec{j} + x^2 y \vec{k}$$
;

B)
$$\vec{a} = (yz - 2x)\vec{i} + (xz + zy)\vec{j} + xy\vec{k}$$
;

$$\Gamma) \vec{a} = (2xy + z)\vec{i} + (x^2 - 2y)\vec{j} + x\vec{k} .$$

В случае потенциальности найти потенциал.

Примеры оформления решения

1 Найти линии и поверхности уровня скалярных полей:

a)
$$U(x,y) = x^2 - 2y$$
;

6)
$$U(x,y,z) = x^2 + y^2$$
.

Pewehue. а) функция, задающая потенциал поля, зависит от двух переменных. Следовательно, уравнения линий уровня поля имеют вид $x^2-2y=C$. С геометрической точки зрения, это множество парабол (рисунок 2.19, а), определенное на всей плоскости Oxy;

расположенную над плоскостью Охуг.

Pewehue. Для того чтобы можно было применить теорему Остроградского - Гаусса, «замкнем» снизу данную поверхность частью плоскости Oxy, ограниченной окружностью $x^2 + y^2 = 1$.

Пусть Q — пространственная область, ограниченная замкнутой кусочно-гладкой поверхностью Ω , состоящей из параболоида вращения $\Omega_1 = \left\{ \left(x; y; z \right) \middle| z = 1 - x^2 - y^2 \right\}$ и круга Ω_2 на плоскости Oxy (рисунок 2. 21).

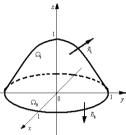


Рисунок 2. 21 – Поверхность к типовому примеру 7

Дивергенция $div\vec{a}(M)$ по формуле (8.12) равна:

$$\operatorname{div}\vec{a}(M) = \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} + \frac{\partial Z}{\partial z} = \frac{2xy}{1+y^2} + \frac{2x}{1+y^2} - \frac{2x(1+y)}{1+y^2} \equiv 0.$$

На основании формулы Остроградского - Гаусса поток Π через замкнутую поверхность Ω равен нулю.

С другой стороны, обозначим через Π_1 и Π_2 потоки через поверхности параболоида Ω_1 и круга Ω_2 соответственно. По свойству аддитивности поверхностного интеграла 2-го рода получим

$$\Pi = \Pi_1 + \Pi_2 = \iint_{\Omega_1} \vec{a} \cdot \vec{n}_1 \, dS + \iint_{\Omega_2} \vec{a} \cdot \vec{n}_2 \, dS = 0 .$$

Следовательно, искомый поток

$$\prod_{1} = \iint_{\Omega_{1}} \vec{a} \cdot \vec{n}_{1} \, dS = -\iint_{\Omega_{2}} \vec{a} \cdot \vec{n}_{2} \, dS .$$

Так как z=0 на поверхности Ω_2 и $\vec{n}_2=-\vec{k}$, то

$$\vec{a} = \frac{x^2 y}{1 + y^2} \cdot \vec{i} + 2x \cdot \operatorname{arctg} y \cdot \vec{j} - \vec{k} ,$$

$$= \int_{0}^{2\pi} d\varphi \int_{0}^{\sqrt{2}} \left(2r^{4} \sin^{3} \varphi - r^{3}\right) dr = -2\pi.$$

6 Найти дивергенцию векторного поля

$$\vec{a} = y^2 \cdot \vec{i} - (x^2 + y^2) \cdot \vec{j} + z(3y^2 + x) \cdot \vec{k}$$

в точках $M_1(-2;1;-2)$, $M_2(7;0;1)$, $M_3(0;0;0)$.

 $Pe\, w\, e\, h\, u\, e$. Заданное поле определено на всем пространстве \mathbb{R}^3 . Найдем частные производные от функций

$$X = y^2$$
, $Y = (x^2 + y^2)$; $Z = z(3y^2 + x)$

являющихся координатами вектора $\vec{a}(M)$, и их значения в точках $M_1,\ M_2$ и M_3 :

$$\begin{split} \frac{\partial X}{\partial x} &= 0 \,, \\ \frac{\partial Y}{\partial y} &= -2y \,, \frac{\partial Z}{\partial z} = 3y^2 + x \\ \frac{\partial Y(M_1)}{\partial y} &= -2 \,, \frac{\partial Z(M_1)}{\partial z} = 1 \,, \\ \frac{\partial Y(M_2)}{\partial y} &= 0 \,, \frac{\partial Z(M_2)}{\partial z} = 7 \,, \\ \frac{\partial Y(M_3)}{\partial y} &= 0 \,, \frac{\partial Z(M_3)}{\partial z} = 0 \,. \end{split}$$

Тогда

$$\operatorname{div}\vec{a}(M_1) = 0 - 2 + 1 = -1,$$

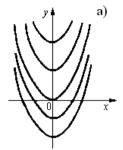
 $\operatorname{div}\vec{a}(M_2) = 0 + 0 + 7 = 7,$
 $\operatorname{div}\vec{a}(M_3) = 0 + 0 + 0 = 0.$

Таким образом, данное поле в точке $\,M_1\,$ имеет сток, в точке $\,M_2\,$ – источник, а в точке $\,M_3\,$ нет ни источника, ни стока.

7 Используя теорему Остроградского - Гаусса, вычислить поток векторного поля

$$\vec{a} = \left(\frac{x^2 y}{1 + y^2} + 6yz\right) \cdot \vec{i} + 2x \cdot \text{arctg } y \cdot \vec{j} - \frac{2xz(1 + y) + 1 + y^2}{1 + y^2} \cdot \vec{k}$$

через внешнюю сторону поверхности $z = 1 - x^2 - y^2$,



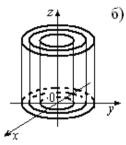


Рисунок 2. 19 – Линии (a) и поверхности (б) уровня к типовому примеру 1

б) заданный потенциал определяет скалярное поле во всем пространстве \mathbb{R}^3 . Уравнения эквипотенциальных поверхностей имеют вид $x^2+y^2=C$, C>0. С геометрической точки зрения, это множество круговых цилиндров (рисунок 2. 19, б).

2 Найти производную скалярного поля u = xyz в точке P_0 (1;-1;1) по направлению вектора $\overrightarrow{P_0P_1}$, где P_1 (2;3;1).

 $Pe\ me\ nu\ e$. Найдем направляющие косинусы вектора $\overline{P_0P_1}=(1;4;0)$, длина которого $|\overline{P_0P_1}|=\sqrt{17}$. Имеем

$$\cos \alpha = \frac{1}{\sqrt{17}}$$
, $\cos \beta = \frac{4}{\sqrt{17}}$, $\cos \gamma = 0$.

Вычислим значения частных производных функции U = xyz в точке P_0 (1;-1;1):

$$\frac{\partial U(P_0)}{\partial x} = yz\big|_{P_0} = -1, \quad \frac{\partial U(P_0)}{\partial y} = xz\big|_{P_0} = 1, \quad \frac{\partial U(P_0)}{\partial z} = xy\big|_{P_0} = -1.$$

Получаем

$$\frac{\partial U(P_0)}{\partial l} = -\frac{1}{\sqrt{17}} + \frac{4}{\sqrt{17}} - 1 \cdot 0 = \frac{3}{\sqrt{17}}.$$

3 Найти градиент поля $U = x^2 + xyz$ в точке $P_0(1;-1;2)$ и наибольшую скорость изменения потенциала в этой точке.

 $P\,e\, w\,e\, h\, u\, e$. Определим значения частных производных функции $U=x^2+xyz$ в заданной точке:

$$\frac{\partial U(P_0)}{\partial x} = (2x + yz)\Big|_{P_0} = 0;$$

$$\frac{\partial U(P_0)}{\partial y} = xz\big|_{P_0} = 2; \quad \frac{\partial U(P_0)}{\partial z} = xy\big|_{P_0} = -1.$$

Тогда имеем

grad
$$U(P_0) = 2j - k$$
; $\frac{\partial U}{\partial l_{\text{max}}} = \sqrt{5}$.

4 Найти векторные линии магнитного поля бесконечного проводника, по которому проходит ток силой I.

 $P\,e\,w\,e\,h\,u\,e$. Выберем направление оси $O\!z$, совпадающее с направлением тока I . В этом случае вектор напряженности магнитного поля $\vec{\rm H}=\frac{2}{\rho^2}\vec{I}\times\vec{r}$, где $\vec{I}=I\cdot\vec{k}$ — вектор тока; \vec{r} —

радиус-вектор точки P(x;y;z); ρ – расстояние от оси проводника до точки M . Найдем $\vec{I} \times \vec{r}$:

$$\vec{I} \times \vec{r} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 0 & I \\ x & y & z \end{vmatrix} = -yI \cdot \vec{i} + xI \cdot \vec{j},$$

$$\vec{H} = -\frac{2I}{\rho^2} y \cdot \vec{i} + \frac{2I}{\rho^2} x \cdot \vec{j}.$$

Система дифференциальных уравнений векторных линий имеет вид

$$\frac{dx}{-y} = \frac{dy}{x} = \frac{dz}{0} .$$

Отсюда

$$\begin{cases} xdx + ydy = 0, \\ dz = 0, \end{cases} \quad \text{M} \quad \begin{cases} x^2 + y^2 = c_1, \\ z = c_1, \end{cases}$$

где $c_1 \ge 0$.

Таким образом, векторными линиями магнитного поля бесконечного проводника являются окружности с центрами на оси Oz.

5 Вычислить поток вектора $\vec{a}=y^2\vec{j}+z\cdot\vec{k}$ через внешнюю сторону поверхности Ω , представляющую собой часть параболоида $z=x^2+y^2$, отсеченного плоскостью z=2 (рисунок 2. 20).

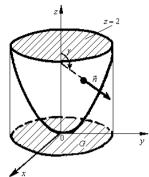


Рисунок 2. 20 – Поверхность к типовому примеру 5

Единичный нормальный вектор к внешней стороне поверхности Ω равен

$$\vec{n} = \left(\frac{2x}{\sqrt{1+4x^2+4y^2}}; \frac{2y}{\sqrt{1+4x^2+4y^2}}; \frac{-1}{\sqrt{1+4x^2+4y^2}}\right),$$

так как $\frac{\pi}{2} \le \gamma \le \pi$.

Тогда поток равен

$$\Pi = \iint_{\Omega} \vec{a} \cdot \vec{n} \, dS = \iint_{\Omega} \frac{2y^3 - z}{\sqrt{1 + 4x^2 + 4y^2}} \, dS = \begin{bmatrix} \cos \gamma = -\frac{1}{\sqrt{1 + 4x^2 + 4y^2}}, \\ dS = \frac{dx \, dy}{|\cos \gamma|} = \\ = \sqrt{1 + 4x^2 + 4y^2} \, dx \, dy, \end{bmatrix} =$$

$$= \iint_{\Omega} \frac{2y^{3} - z}{\sqrt{1 + 4x^{2} + 4y^{2}}} \cdot \sqrt{1 + 4x^{2} + 4y^{2}} \, dxdy =$$

$$= \iint_{\Omega} (2y^{3} - z) \, dxdy == \left[z = x^{2} + y^{2}\right] = \iint_{G_{xy}} (2y^{3} - x^{2} - y^{2}) \, dxdy =$$

$$= \begin{bmatrix} x = r \cos \varphi, \\ y = r \sin \varphi, J = r, \\ 0 \le r \le \sqrt{2}, 0 \le \varphi \le 2\pi \end{bmatrix} = \iint_{G^{*}} (2r^{3} \sin^{3} \gamma - r^{2}) \, rdrd\varphi =$$