Лекция 8. РЯД ЛОРАНА И ИЗОЛИРОВАННЫЕ ОСОБЫЕ ТОЧКИ АНАЛИТИЧЕСКОЙ ФУНКЦИИ

- 1. Ряд Лорана.
- 2.Классификация изолированных особых точек аналитической функции.
- 3. Разложение аналитической функции в ряд Лорана в окрестности бесконечно удаленной точки.

1. Ряд Лорана.

Определение 1. Ряд вида $\sum_{k=-\infty}^{\infty} c_k (z-z_0)^k$, где k — при-

нимает все целые значения, z_0 — фиксированная точка комплексной плоскости; z — переменная точка; c_k — некоторые комплексные числа (коэффициенты ряда), называется *рядом Лорана*.

Этот ряд понимается как сумма двух рядов

$$\sum_{k=-\infty}^{\infty} c_k (z-z_0)^k = \sum_{k=0}^{\infty} c_k (z-z_0)^k + \sum_{k=1}^{\infty} c_{-k} (z-z_0)^{-k} .$$

Определение 2. Ряд $\sum_{k=0}^{\infty} c_k (z-z_0)^k$ называется *пра*-

вильной частью ряда Лорана, ряд $\sum_{k=1}^{\infty} c_{-k} (z-z_0)^{-k}$ называется

главной частью ряда Лорана.

Определение 3. *Областью сходимости* ряда Лорана называется общая часть сходимости его главной части, и области сходимости его правильной части.

Областью сходимости правильной части ряда Лорана является круг радиуса $R_1 = \frac{1}{\varlimsup_{k \to \infty}^k \! \left| c_k \right|}$ с центром в точке z_0 . Внутри это-

го круга ряд сходится к некоторой аналитической функции $f_1(z)$ – сумме ряда.

Определим область сходимости ряда $\sum_{k=1}^{\infty} c_{-k} (z-z_0)^{-k}$. Введем

новую переменную $\xi = \frac{1}{z-z_0}$. Тогда получим ряд $\sum_{k=1}^{\infty} c_{-k} \cdot \xi^k$, который является степенным и сходящимся в круге радиуса $\rho = \frac{1}{\varlimsup_{k \to \infty}^{k} \sqrt{|c_{-k}|}}$ к аналитической функции $\varphi(\xi)$, $|\xi| < \rho$. Возвра-

щаясь к переменной z, имеем

$$\varphi\left(\frac{1}{z-z_0}\right) = \sum_{k=1}^{\infty} c_{-k} (z-z_0)^{-k},$$

для всех z удовлетворяющих неравенству $\left| \frac{1}{z-z_0} \right| < \rho$ или

$$\left|z-z_0\right|>\frac{1}{\rho}$$
.

Введем обозначения $f_2(z) = \varphi \left(\frac{1}{z - z_0} \right)$, $R_2 = \frac{1}{\rho}$. Тогда ряд

 $\sum_{k=1}^{\infty} c_{-k} (z-z_0)^{-k}$ сходится к функции $f_2(z)$ вне круга радиуса R_2 с центром в точке z_0 .

Итак,
$$f_1(z) = \sum_{k=0}^{\infty} c_k (z - z_0)^k$$
 в круге $|z - z_0| < R_1$,

$$f_2(z) = \sum_{k=1}^{\infty} c_{-k} (z - z_0)^{-k}$$
 в круге $|z - z_0| > R_2$.

Если $R_1>R_2$, то существует общая область сходимости рядов, составляющих ряд Лорана. Внутри этого кольца ряд $\sum_{k=-\infty}^{\infty} c_k \big(z-z_0\big)^k \ \text{сходится } \kappa \ \text{некоторой аналитической функции}$

$$f(z) = f_1(z) + f_2(z)$$
.

Если $R_1 < R_2$, то ряд Лорана нигде не сходится.

Пусть f(z) аналитическая функция в кольце $R_1 < |z - z_0| < R_2$.

Теорема 1. Функция f(z), аналитическая в кольце $R_1 < |z-z_0| < R_2$, однозначно представляется в этом кольце рядом Лорана $\sum_{k=0}^{\infty} c_k (z-z_0)^k$, где коэффициенты c_k вычисляются

по формуле

$$c_k = \frac{1}{2\pi i} \oint_{C_{k'}} \frac{f(\xi)}{(\xi - z_0)^{k+1}} d\xi, \ (k = 0, \pm 1, \pm 2, ...),$$

 $C_{k'}$ – любой замкнутый контур в кольце $R_1 < \left|z-z_0\right| < R_2$, содержащий точку z_0 внутри.

Без доказательства.

Следствие. Пусть функция f(z) — аналитическая в кольце $R_1 < |z-z_0| < R_2$. Если на окружности $|z-z_0| = R$, $R_1 < R < R_2$, модуль функции f(z) не превышает M, т.е. |f(z)| < M, то $|c_k| \le \frac{M}{R^k}$, $(k=0,\pm 1,\pm 2,\ldots)$.

Пример. Разложить в ряд Лорана функцию

$$f(z) = \frac{1}{(z-1)(z-2)}$$

в круге |z| < 1.

Решение. Представим функцию f(z) в виде

$$f(z) = \frac{1}{z-2} - \frac{1}{z-1}$$
.

В круге |z| < 1 полученные дроби разлагаются в сходящиеся геометрические прогрессии:

$$\frac{1}{z-2} = -\frac{1}{2} \cdot \frac{1}{1-\frac{z}{2}} = -\frac{1}{2} \cdot \left(1 + \frac{z}{2} + \frac{z^2}{2^2} + \dots + \frac{z^n}{2^n} + \dots\right),$$

$$\frac{1}{z-1} = -\frac{1}{z-1} = -\left(1 + z + z^2 + \dots + z^n + \dots\right).$$

Тогда ряд Лорана для
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 есть
$$f(z) = -\frac{1}{2} \cdot \left(1 + \frac{z}{2} + \frac{z^2}{2^2} + \dots + \frac{z^n}{2^n} + \dots\right) + \left(1 + z + z^2 + \dots + z^n + \dots\right) =$$
$$= \frac{1}{2} + \frac{3}{4}z + \frac{7}{8}z^2 + \dots + \frac{2^{n-1}-1}{2^{n+1}}z^n + \dots.$$

2. Классификация изолированных особых точек аналитической функции.

Определение 4. *Особой точкой* функции f(z) называется точка, в которой функция не является аналитичной.

Определение 5. Особая точка z_0 аналитической функции f(z) называется *изолированной*, если в некоторой ее окрестности не содержится других особых точек функции f(z).

Из определения следует, что если точка z_0 является изолированной особой точкой аналитической функции f(z), то найдется такое положительное число R>0, что в кольце $0<|z-z_0|< R$ функция является аналитической и разлагается в ряд Лорана

$$f(z) = \sum_{k=-\infty}^{\infty} c_k (z - z_0)^k = \sum_{k=0}^{\infty} c_k (z - z_0)^k + \sum_{k=1}^{\infty} \frac{c_k}{(z - z_0)^k}.$$

Классификация особых точек аналитической функции f(z) производится в зависимости от вида ряда Лорана

Определение 6. Особая точка z_0 называется устранимой особой точкой функции f(z), если ряд Лорана функции f(z) не содержит членов с отрицательными степенями разности $(z-z_0)$ (ряд Лорана не содержит главной части $f(z) = \sum_{k=0}^{\infty} c_k (z-z_0)^k$).

Определение 7. Особая точка z_0 называется *полюсом* функции f(z), если ряд Лорана функции f(z) содержит конеч-

ное число членов с отрицательными степенями разности $(z-z_0)$ (в главной части ряда содержится конечное число членов

$$f(z) = \sum_{k=0}^{\infty} c_k (z - z_0)^k + \frac{c_{-1}}{z - z_0} + \frac{c_{-2}}{(z - z_0)^2} + \dots + \frac{c_{-m}}{(z - z_0)^m}).$$
 Если

m=1, то полюс z_0 называется **простым**, если $m \ge 2$, то кратным; число m называется **порядком** полюса,

Определение 8. Точка z_0 называется существенно особой точкой функции f(z), если ряд Лорана содержит бесконечно много членов с отрицательными степенями разности $(z-z_0)$ (в главной части ряда содержится бесконечно много членов с отрицательными показателями).

Теорема 2. Если точка z_0 является устранимой особой точкой аналитической функции f(z), то в некоторой окрестности точки z_0 функция f(z) ограничена, и ее можно представить в виде

$$f(z) = (z - z_0)^m \cdot \varphi(z),$$

где m — некоторое натуральное число; $\varphi(z)$ — аналитическая функция в окрестности точки z_0 , $\varphi(z) \neq 0$.

▶ Шаг 1. Ограниченность. Пусть z_0 — устранимая особая точка аналитической функции f(z). В этом случае разложение f(z) в ряд Лорана имеет вид $f(z) = \sum_{k=0}^{\infty} c_k (z-z_0)^k$ во всех точках кольца $0 < |z-z_0| < R$.

Так как правая часть равенства $f(z) = \sum_{k=0}^{\infty} c_k (z-z_0)^k$ является степенным рядом, сходящимся в круге $|z-z_0| < R$, то его сумма аналитична в круге и непрерывна в точке z_0 . Поэтому при $z \to z_0$ сумма этого ряда имеет предел, равный c_0 , т.е. $\lim_{z \to z_0} f(z) = c_0$. Если функция f(z) не была определена в точке z_0 , то доопределим ее, положив $f(z_0) = c_0$. Если первоначаль-

ное значение функции $f(z_0)$ не совпадает с c_0 , то изменим значение функции f(z) в точке z_0 , положив $f(z_0) = c_0$. Определенная таким образом функция f(z) является аналитической всюду в круге $|z-z_0| < R$. Тем самым разрыв функции f(z) в точке z_0 устранен.

Так как $\lim_{z\to z_0}f(z)\!=\!c_0,\ c_0\neq\infty$, то для любого $\varepsilon>0$ найдется такое $\delta=\delta(\varepsilon)\!>\!0$, что из неравенства $|z-z_0|\!<\!\delta$ следует неравенство $|f(z)\!-\!c_0|\!<\!\varepsilon$. Отсюда следует, что аналитическая функция f(z) является ограниченной в δ -окрестности устранимой особой точкой z_0 .

Шаг 2. Представление в виде $f(z) = (z-z_0)^m \cdot \varphi(z)$. Пусть в степенном ряде $f(z) = \sum_{k=0}^\infty c_k (z-z_0)^k$ первый из необращающихся в нуль коэффициентов есть c_m , $m=0,1,2,\ldots$ Тогда ряд перепишется в виде $f(z) = \sum_{k=m}^\infty c_k (z-z_0)^k$ или

$$f(z) = (z - z_0)^m \sum_{k=m}^{\infty} c_k (z - z_0)^{k-m}$$

Если положить $\varphi(z) = \sum_{k=m} c_k (z-z_0)^{k-m}$, то ряд Лорана для функции f(z) принимает следующий вид $f(z) = (z-z_0)^m \varphi(z)$. \blacktriangleleft Замечание. Верно и обратное утверждение: если функция f(z), аналитическая в круговом кольце $0 < |z-z_0| < R$, ограничена в этом кольце, то точка z_0 есть устранимая особая точка функции f(z).

Пример. Функция $f(z) = \frac{\sin z}{z}$ не определена в точке z = 0. При $z \neq 0$ функцию можно представить в виде ряда

$$\frac{\sin z}{z} = \frac{z - \frac{z^3}{3!} + \dots + (-1)^n \frac{z^{2n-1}}{(2n-1)!} + \dots}{z} = 1 - \frac{z^2}{3!} + \dots + (-1)^n \frac{z^{2n-2}}{(2n-1)!} + \dots$$

Ряд Лорана в точке z=0 не содержит членов с отрицательными степенями, т.е. ряд Лорана не содержит главной части. Поэтому точка z=0 является устранимой особой точкой для функции $f(z)=\frac{\sin z}{z}$.

Из найденного разложения также следует, что $\lim_{z\to 0} \frac{\sin z}{z} = 1$.

Если доопределить функцию $f(z) = \frac{\sin z}{z}$, положив f(0) = 1, то функция f(z) будет аналитической и в точке z = 0.

Теорема 3. Для того чтобы точка z_0 была полюсом порядка m функции f(z), необходимо и достаточно, чтобы

$$\lim_{z\to z_0} f(z) = \infty$$

▶ *Необходимость*. Пусть z_0 — полюс функции f(z), аналитической в кольце $0 < |z - z_0| < R$. Разложение функции в ряд Лорана в этом кольце есть

$$\begin{split} f\!\left(z\right) &= \sum_{k=0}^{\infty} c_k \!\left(z-z_0\right)^{\!k} + \!\frac{c_{-1}}{z-z_0} + \!\frac{c_{-2}}{\left(z-z_0\right)^{\!2}} + \dots + \!\frac{c_{-m}}{\left(z-z_0\right)^{\!m}} \;, \end{split}$$
 где $c_{-m} \neq 0$.

Умножая обе части разложения на $(z-z_0)^m$, получим $f(z)(z-z_0)^m =$

$$=\sum_{k=0}^{\infty}c_k(z-z_0)^{k+m}+c_{-1}(z-z_0)^{m-1}+c_{-2}(z-z_0)^{m-2}+\cdots+c_{-m}.$$

Отсюда следует, что для функции $\varphi(z) = (z - z_0)^m f(z)$ точка z_0 является устранимой особой точкой. Учитывая, что сумма

степенного ряда, находящегося в правой части равенства, аналитична и поэтому непрерывна в круге $|z-z_0| < R$, находим

$$\lim_{z\to z_0} (z-z_0)^m f(z) = c_{-m}, \, \text{где } c_{-m} \neq 0.$$

Тогда
$$\lim_{z \to z_0} \left(z - z_0 \right)^m \cdot \left| f(z) \right| = \left| c_{-m} \right|$$
, где $\left| c_{-m} \right| \neq 0$.

Пусть q — некоторое положительное число, удовлетворяющее условию $q<|c_{-m}|$. Тогда в некотором круге с центром z_0 достаточно малого радиуса выполняется неравенство $|z-z_0|^m\cdot |f(z)|>q$.

Отсюда
$$|f(z)| > \frac{q}{|z-z_0|^m}$$
.

Из последнего неравенства следует, что $\lim_{z\to z_0} \left|f(z)\right|=\infty$. Следовательно, $\lim_{z\to z_0} f(z)=\infty$.

Достаточность. Пусть M — любое положительное число. Тогда, согласно условиям теоремы, можно указать такую δ - окрестность точки z_0 , в которой выполняется неравенство |f(z)| > M. Рассмотрим функцию $g(z) = \frac{1}{f(z)}$. В δ -окрестности точки z_0 функция g(z) является аналитической и ограниченной. Поэтому точка z_0 является устранимой особой точкой для функции g(z). Следовательно, функция g(z) в окрестности точки z_0 может быть представлена в виде $g(z) = (z-z_0)^m \varphi(z)$, где m — некоторое натуральное число и функция $\varphi(z)$ — аналитическая функция, $\varphi(z_0) \neq 0$. Тогда для функции $f(z) = \frac{1}{g(z)}$ в δ -окрестности точки z_0 имеем $f(z) = \frac{1}{(z-z_0)^m} \cdot \frac{1}{\varphi(z)}$ или $f(z) = \frac{\varphi_1(z)}{(z-z_0)^m}$. Здесь $\varphi_1(z) = \frac{1}{\varphi(z)}$ — аналитическая функция,

для которой в δ -окрестности точки z_0 справедливо следующее разложение в ряд Тейлора

$$\varphi_1(z) = c_0 + c_1(z - z_0) + c_2(z - z_0)^2 + \dots + c_n(z - z_0)^n + \dots, c_0 \neq 0.$$

Тогда в δ -окрестности точки z_0 разложение функции f(z) принимает вид

$$f(z) = \frac{c_0}{(z - z_0)^m} + \frac{c_1}{(z - z_0)^{m-1}} + \dots + \frac{c_{m-1}}{z - z_0} + \sum_{k=0}^{\infty} c_{k+m} (z - z_0)^k.$$

Отсюда следует, что точка z_0 является полюсом порядка m для аналитической функции f(z). \blacktriangleleft

Пример. Функция $f(z) = \frac{z-1}{(z^2+9)(z+1)^4}$ имеет три полюса:

 $z_1 = -1$ четвертого порядка, $z_2 = 3i$ и $z_3 = -3i$ полюсы первого порядка.

Определение 9. Аналитическая функция f(z) называется *мероморфной*, если она в конечной части комплексной плоскости C(Oxy) не имеет других особых точек, кроме полюсов.

Теорема 4 (Сохоцкого). Пусть z_0 существенно особая точка. Каково бы ни было комплексное число W (конечное или нет), существует такая последовательность $(z_n)_{n=1}^\infty$ сходящаяся z_0 , что $\lim_{n\to\infty} f(z_n) = W$.

Без доказательства.

Даная теорема говорит о том, что в достаточно малой окрестности существенно особой точки z_0 функция f(z) становится неопределенной. В такой точке функция не имеет ни конечного ни бесконечного пределов. Выбирая различные последовательности точек $(z_n)_{n=1}^\infty$, сходящихся к точке z_0 , можно получать различные последовательности соответствующих значений функций, сходящихся к различным пределам.

Пример. Функция $f(z) = e^{\frac{1}{z}}$ в окрестности точки z = 0 имеет следующее разложение в ряд Лорана

$$e^{\frac{1}{z}} = 1 + \frac{1}{z} + \frac{1}{2! \cdot z^2} + \dots + \frac{1}{n! \cdot z^n} + \dots$$

Видно, что точка z=0 является существенно особой точкой. Если $z\to 0$ вдоль положительной части действительной оси,

To
$$\lim_{z\to 0} e^{\frac{1}{z}} = \lim_{x\to 0} e^{\frac{1}{x}} = +\infty$$
.

Если $z\to 0$ вдоль отрицательной части действительной оси, то $\lim_{z\to 0}e^{\frac{1}{z}}=\lim_{x\to 0-0}e^{\frac{1}{x}}=0$.

3. Разложение аналитической функции в ряд Лорана в окрестности бесконечно удаленной точки.

Точка $z=\infty$ называется изолированной особой точкой аналитической функции f(z), если вне круга некоторого радиуса R функция f(z) не имеет особых точек, находящихся на конечном расстоянии от начала координат. Положим $z=\frac{1}{w}$. При этом преобразовании точка $z=\infty$ перейдет в точку w=0 и окрестность бесконечно удаленной точки, в которой функция f(z) аналитична, перейдет в окрестность точки w=0. Функция $g(w)=f\left(\frac{1}{w}\right)$ является аналитической в окрестности точки w=0. Разложение функции g(z) в ряд Лорана в окрестности точки точки w=0 есть $g(z)=\sum_{k=-\infty}^{\infty}c_k'$ w^k . Возвращаясь к прежней переменной $z=\frac{1}{w}$, получим

$$f(z) = g\left(\frac{1}{z}\right) = \sum_{k=-\infty}^{\infty} c_k z^k ,$$

где $c_{\iota} = c_{-\iota}$, $k = 0, \pm 1, \pm 2, \dots$

Очевидно, что данное разложение содержит столько членов с положительными степенями z, сколько членов с отрицательны-

ми степенями w содержит разложение функции $g(w) = f\left(\frac{1}{w}\right)$ ряд Лорана в окрестности точки w = 0.

Итак, 1) если в разложении f(z) в ряд Лорана нет членов с положительными степенями z, то бесконечно удаленная точка $z = \infty$ называется устранимой особой точкой функции f(z);

- 2) если в разложении f(z) в ряд Лорана есть лишь конечное число членов с положительными степенями z, то бесконечно удаленная точка $z=\infty$ называется **полюсом** функции f(z);
- 3) если в разложении f(z) в ряд Лорана есть бесконечно много членов положительными степенями z, то бесконечно удаленная точка $z=\infty$ называется существенно особой точкой функции f(z).

Справедливы следующие утверждения:

- если бесконечно удаленная точка является устранимой особой точкой функции f(z), то функция стремится к конечному пределу при $z \to \infty$;
- если функция f(z) имеет в бесконечно удаленной точке полюс, то $\lim_{z\to\infty} f(z) = \infty$;
- если бесконечно удаленная точка является существенно особой точкой для функции f(z), то каково бы ни было комплексное число (конечное или бесконечное), существует такая последовательность $(z_n)_{n=1}^\infty$, стремящаяся к существенно особой точке $z_n \to \infty$, что $\lim_{z_n \to \infty} f(z_n) = W$.

Если функция f(z) имеет в точке $z = \infty$ устранимую особенность, то говорят, что она аналитична в бесконечно удаленной точке, и принимают $f(\infty) = \lim_{z \to \infty} f(z)$.

Пример. Определить какую особенность в бесконечно удаленной точке имеет функция $f(z) = \frac{1}{z-4}$.

 $Pe\ w\ e\ h\ u\ e$. Произведем замену переменного z на переменную w по формуле $z=\frac{1}{w}$. Тогда данная функция принимает следующий вид $f\bigg(\frac{1}{w}\bigg)=\frac{w}{1-4w}$. При условии |4w|<1 имеет место разложение $f\bigg(\frac{1}{w}\bigg)=w\Big(1+4w+\big(4w\big)^2+\cdots\Big)$. Возвращаясь к переменной z , имеем

$$f(z) = \frac{1}{z-4} = \frac{1}{z} \cdot \left(1 + \frac{4}{z} + \frac{4^2}{z^2} + \cdots\right) = \sum_{k=0}^{\infty} \frac{4^k}{z^{k+1}}, |z| < 4.$$

Точка $z = \infty$ является устранимо особой точкой.

Вопросы для самоконтроля

- 1. Какой ряд называется рядом Лорана?
- 2. Как определяется область сходимости правильной и главной частей ряда Лорана?
- 3. Сформулируйте теорему о разложении аналитической функции в ряд Лорана.
 - 4. Какая точка называется особой точкой функции?
- 5. Какой вид имеет ряд Лорана функции в окрестности устранимой особой точки?
 - 6. Какому условию удовлетворяет функция в полюсе?
 - 7. В чем суть теоремы Сохоцкого?
- 8. Как разлагается функция в ряд Лорана окрестности бесконечно удаленной точки?
- 9. В чем особенность поведения аналитической функции в окрестности бесконечно удаленной точки $z = \infty$?