Лекция 5. ДИФФЕРЕНЦИРУЕМОСТЬ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

- 1. Необходимое и достаточное условие дифференцируемости.
- 2. Полный дифференциал функции многих переменных и его геометрический смысл.
- 3. Дифференцирование сложной функции.
- 4. Инвариантность формы первого дифференциала.

1. Необходимое и достаточное условия дифференцируемости.

Напоминание. Функция y = f(x) называется **дифференци- руемой** в точке x_0 , если приращение функции представимо в виде $f(x_0 + \Delta x) - f(x_0) = A(x_0) \Delta x + o(\Delta x)$. Необходимым и достаточным условием дифференцируемости функции y = f(x) в точке x_0 является существование производной $f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta f(x_0)}{\Delta x} = A(x_0)$.

Рассмотрим функцию двух переменных z = f(x, y). Пусть z = f(x, y) определена в окрестности $U(\delta; P_0)$ точки $P_0(x_0; y_0)$.

Определение 1. Функция z = f(x,y) называется **диффе**ренцируемой в точке $P_0(x_0;y_0)$, если ее полное приращение в этой точке можно представить в виде

$$\Delta z = A(x_0, y_0) \Delta x + B(x_0, y_0) \Delta y + \alpha \Delta x + \beta \Delta y, \tag{1}$$

где A и B — некоторые постоянные, зависящие от x_0 и y_0 ; $\alpha = \alpha(\Delta x, \Delta y)$ и $\beta = \beta(\Delta x, \Delta y)$ — бесконечно малые функции от Δx и Δy : $\lim_{\begin{subarray}{c} \Delta x \to 0 \\ \Delta y \to 0 \end{subarray}} \alpha(\Delta x, \Delta y) = 0$, $\lim_{\begin{subarray}{c} \Delta x \to 0 \\ \Delta y \to 0 \end{subarray}} \beta(\Delta x, \Delta y) = 0$.

Данное равенство выражает условие дифференцируемости функции z = f(x,y) в точке $P_0(x_0;y_0)$.

Определение 2. Функция z = f(x, y), дифференцируемая в каждой точке множества G, называется **дифференцируемой** на множестве G.

Пример. Доказать, что функция $z = xy^2$ дифференцируема на

всей плоскости Оху.

Решение. Действительно, полное приращение данной функции в любой точке $P(x;y) \in \mathbb{R}^2$ имеет вид

$$\Delta z = (x + \Delta x)(y + \Delta y)^2 - xy^2 =$$

$$= y^2 \Delta x + 2xy \Delta y + (2xy \Delta y + \Delta y^2) \Delta x + x(\Delta y)^2.$$

Положив $y^2=A$, 2xy=B, $2xy\Delta y+\Delta y^2=\alpha$, $x\Delta y=\beta$, получим представление Δz в виде условия дифференцируемости, так как A и B в фиксированной точке $P_0\big(x_0;y_0\big)$ являются постоянными, а $\alpha\to 0$ и $\beta\to 0$ при $\Delta x\to 0$ и $\Delta y\to 0$.

Пусть $\rho = \sqrt{\Delta x^2 + \Delta y^2}$ — расстояние между точками $P_0(x_0; y_0)$ и P(x; y). Очевидно, что если $\Delta x \to 0$ и $\Delta y \to 0$, то $\rho \to 0$, и наоборот, если $\rho \to 0$, то $\Delta x \to 0$ и $\Delta y \to 0$, а следовательно, α и β стремятся к нулю.

Тогда сумму $\alpha \Delta x + \beta \Delta y$ можно переписать в виде

$$\alpha \Delta x + \beta \Delta y = \left(\alpha \cdot \frac{\Delta x}{\rho} + \beta \cdot \frac{\Delta y}{\rho}\right) \cdot \rho = \varepsilon \cdot \rho = o(\rho),$$

так как
$$\left| \frac{\Delta x}{\rho} \right| \le 1$$
, $\left| \frac{\Delta y}{\rho} \right| \le 1$ и $\lim_{\rho \to 0} \varepsilon = \lim_{\rho \to 0} \left(\alpha \frac{\Delta x}{\rho} + \beta \frac{\Delta y}{\rho} \right) = 0$.

С учетом этого условие дифференцируемости функции в точке $P_0(x_0;y_0)$ можно записать в виде

$$\Delta z = A\Delta x + B\Delta y + o(\rho), \tag{2}$$

где $\rho = \sqrt{\Delta x^2 + \Delta y^2}$ — расстояние между точками $P_0(x_0; y_0)$ и P(x; y), $\lim_{\rho \to 0} \frac{o(\rho)}{\rho} = 0$.

Условия дифференцируемости (1) и (2) функции z = f(x, y) в точке $P_0(x_0; y_0)$ эквивалентны.

В равенствах (1), (2) слагаемое $A\Delta x + B\Delta y$, линейное относительно Δx и Δy , называется главной частью приращения функции, так как оставшееся слагаемое $\alpha \Delta x + \beta \Delta y = o(\rho)$ явля-

ется бесконечно малой функцией более высокого порядка малости, чем $\rho = \sqrt{\Delta x^2 + \Delta y^2}$, при $\Delta x \to 0$ и $\Delta y \to 0$.

Теорема 1 (связь дифференцируемости и непрерывности). Если функция z = f(x,y) дифференцируема в точке $P_0(x_0;y_0)$, то она и непрерывна в этой точке.

▶ Действительно, по определению функции, дифференцируемой в точке $P_0(x_0; y_0)$, ее приращение представимо в виде

$$\Delta z = A\Delta x + B\Delta y + \alpha \Delta x + \beta \Delta y ,$$

где $\lim_{\begin{subarray}{c} \Delta x \to 0 \\ \Delta y \to 0 \end{subarray}} \alpha = 0~;~ \lim_{\begin{subarray}{c} \Delta x \to 0 \\ \Delta y \to 0 \end{subarray}} \beta = 0~;~ A~,~ B~$ – некоторые числа, не зави-

сящие от Δx и Δy .

Следовательно,

$$\lim_{\begin{subarray}{c} \Delta x \to 0 \\ \Delta y \to 0 \end{subarray}} \Delta z = \lim_{\begin{subarray}{c} \Delta x \to 0 \\ \Delta y \to 0 \end{subarray}} (A\Delta x + B\Delta y + \alpha \Delta x + \beta \Delta y) = 0 ,$$

а это означает, что функция z = f(x,y) непрерывна в точке $P_0(x_0;y_0)$. \blacktriangleleft

Теорема 2 (необходимое условие дифференцируемости функции). Если функция z = f(x,y) дифференцируема в точке $P_0(x_0;y_0)$, то она имеет в этой точке частные производные $f_x'(x_0,y_0)$ и $f_y'(x_0,y_0)$, причем $f_x'(x_0,y_0) = A$, $f_y'(x_0,y_0) = B$.

▶ Пусть функция f(x,y) дифференцируема в точке $P_0(x_0;y_0)$, тогда ее приращение представимо в виде (1). Положив в формуле (1) $\Delta y=0$, имеем $\Delta_x z=A\Delta x+\alpha\Delta x$. Разделив это равенство на Δx и перейдя к пределу при $\Delta x\to 0$, получим

$$\lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x} = A = f_x'(x_0, y_0).$$

Следовательно, в точке $P_0(x_0; y_0)$ существует частная производная $f_x'(x, y_0)$.

Аналогично доказывается существование частной производной $f'_{\nu}(x_0, y_0) = B$ в точке $P_0(x_0; y_0)$.

Замечание. Утверждения, обратные утверждениям теорем 1 и 2 неверны, т.е. из непрерывности функции, а также существо-

вания ее частных производных, еще не следует дифференцируемость функции.

Пример. Доказать, что функция $f(x,y) = \sqrt{x^2 + y^2}$ непрерывна в точке O(0;0), но не имеет в этой точке частных производных.

Решение. Действительно,

$$f_x'(0,0) = \lim_{\Delta x \to 0} \frac{\sqrt{(0+\Delta x)+0-0}}{\Delta x} = \lim_{\Delta x \to 0} \frac{|\Delta x|}{\Delta x}$$
.

Функция $\frac{|\Delta x|}{\Delta x}$ не имеет предела при $\Delta x \to 0$. Следовательно, $f_x'(0,0)$ не существует.

Аналогично доказывается, что не существует $f'_{v}(0,0)$.

Теорема 3 (достаточное условие дифференцируемости функции). Если функция z = f(x, y) имеет частные производные в некоторой окрестности точки $P_0(x_0; y_0)$, непрерывные в самой этой точке, то она дифференцируема в точке $P_0(x_0; y_0)$.

▶ Представим полное приращение функции в следующем виде:

$$\Delta f(x_0, y_0) = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) =$$

$$= f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0 + \Delta y) + f(x_0, y_0 + \Delta y) - f(x_0, y_0).$$

Выражение $f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0 + \Delta y)$ является приращением функции по переменной x. Тогда по теореме Лагранжа

$$f\big(x_0 + \Delta x, y_0 + \Delta y\big) - f\big(x_0, y_0 + \Delta y\big) = f_x'\big(\xi, y_0 + \Delta y\big) \Delta x\,,$$
 где $x_0 < \xi < x_0 + \Delta x\,.$

лде
$$x_0 < \zeta < x_0 + \Delta x$$
.
Аналогично $f(x_0, y_0 + \Delta y) - f(x_0, y_0) = f_y'(x_0, \eta) \Delta y$, где $y_0 < \eta < y_0 + \Delta y$.

Следовательно,

$$\Delta f(x_0, y_0) = f'_x(\xi, y_0 + \Delta y) \Delta x + f'_y(x_0, \eta) \Delta y.$$

По условию теоремы частные производные $f'_x(x,y)$ и $f'_y(x,y)$ непрерывны в точке $P_0(x_0;y_0)$. Тогда

$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} f_x'(\xi, y_0 + \Delta y) = f_x'(x_0, y_0),$$

$$\lim_{\substack{\Delta y \to 0 \\ \Delta y \to 0}} f_y'(x_0, \eta) = f_y'(x_0, y_0).$$

Из последних равенств, согласно определению предела, следует, что:

$$f'_x(\xi, y_0 + \Delta y) = f'_x(x_0, y_0) + \alpha$$
,
 $f'_y(x_0, \eta) = f'_y(x_0, y_0) + \beta$,

где α , β — бесконечно малые функции при $\Delta x \to 0$, $\Delta y \to 0$. Подставляя выражения для $f_x'(\xi, y_0 + \Delta y)$, $f_y'(x_0, \eta)$ в формулу, имеем:

$$\Delta f(x_0, y_0) = f_x'(x_0, y_0) \Delta x + f_y'(x_0, y_0) \Delta y + \alpha \Delta x + \beta \Delta y.$$

Значит, функция z = f(x, y) дифференцируема в точке $P_0(x_0; y_0)$.

Функции с непрерывными частными производными называются *непрерывно дифференцируемыми*.

Пример. Функция $z=x^2e^{xy}$ непрерывно дифференцируема в любой точке $P(x;y)\in \mathbf{R}^2$, так как ее частные производные $z_x'=\left(2x+x^2y\right)e^{xy}$ и $z_y'=x^3e^{xy}$ всюду непрерывны.

2. Полный дифференциал функции нескольких переменных и его геометрический смысл.

Если функция z = f(x; y) дифференцируема в точке $P_0(x_0; y_0)$, то ее полное приращение в этой точке можно представить в виде

$$\Delta f(x_0, y_0) = f_x'(x_0, y_0) \Delta x + f_y'(x_0, y_0) \Delta y + \alpha \Delta x + \beta \Delta y.$$

Сумма первых двух слагаемых есть главная линейная (относительно Δx и Δy) часть приращения функции.

Определение 3. Если функция z = f(x; y) дифференцируема в точке $P_0(x_0; y_0)$, то главная линейная относительно приращения аргументов часть ее полного приращения называется **полным дифференциалом** функции.

Обозначается:

$$dz|_{P(x_0;y_0)} = f'_x(x_0,y_0)\Delta x + f'_y(x_0,y_0)\Delta y$$

или

$$df(x_0; y_0) = f_x'(x_0, y_0) \Delta x + f_y'(x_0, y_0) \Delta y$$
.

Пример. Если $z = x^2 y$, то $dz = 2xy\Delta x + x^2 \Delta y \ \forall P(x; y) \in \mathbb{R}^2$.

Приращения независимых переменных Δx и Δy называются $\partial u \phi \phi$ ренциалами независимых переменных x и y и обозначаются соответственно dx и dy.

Тогда полный дифференциал функции запишется в виде:

$$df(x_0, y_0) = \frac{\partial f(x_0, y_0)}{\partial x} dx + \frac{\partial f(x_0, y_0)}{\partial y} dy.$$

Выражения $\frac{\partial f(x_0,y_0)}{\partial x}dx$, $\frac{\partial f(x_0,y_0)}{\partial y}dy$ называются **частны**-

ми дифференциалами функции z = f(x; y).

Обозначаются: $d_x z$ и $d_y z$.

Таким образом,

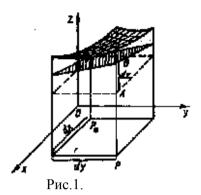
$$dz = d_x z + d_y z .$$

Геометрический смысл дифференциала. Учитывая, что $\Delta x = x - x_0 = dx$, $\Delta y = y - y_0 = dy$, уравнение касательной плоскости можно записать в виде

$$z - z_0 = \frac{\partial f(x_0, y_0)}{\partial x} dx + \frac{\partial f(x_0, y_0)}{\partial y} dy.$$

Правая часть этого уравнения представляет собой полный дифференциал функции $z=f\left(x,y\right)$ в точке $M_0\big(x_0;y_0\big)$, а левая его часть $z-z_0$ — приращение аппликаты касательной плоскости в точке касания: $z-z_0=df\big(x_0,y_0\big)$.

Поэтому полный дифференциал функции z = f(x,y) в точке $P_0(x_0;y_0)$ представляет собой отрезок AB .



Замечание. Определение дифференцируемости функции и ее дифференциала обобщаются на случай функции многих переменных $u = f(x_1, x_2, ..., x_n)$ в точке $x_0 = (x_1^0; x_2^0; ...; x_n^0)$.

Условие дифференцируемости запишется в виде

$$\Delta f = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + \dots + \frac{\partial f}{\partial x_n} dx_n + o(\rho),$$

где
$$\rho = \sqrt{(\Delta x_1)^2 + (\Delta x_2)^2 + ... + (\Delta x_n)^2}$$
.

Дифференциал функции $u = f(x_1, x_2, ..., x_n)$ имеет вид

$$df = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + \dots + \frac{\partial f}{\partial x_n} dx_n.$$

4. Дифференцирование сложной функции.

Пусть z = f(u;v) — функция двух переменных u и v, каждая из которых, в свою очередь, является функцией независимых переменных x и y, т.е. u = u(x,y), v = v(x,y). Тогда z = f(u(x,y),v(x,y)) = F(x,y) — сложная функция двух независимых переменных x и y, а переменные u и v — промежуточные переменные.

Теорема 4. Если функция z = f(u; v) дифференцируема в точке $M_0(u_0; v_0)$, а функции u = u(x, y) и v = v(x, y) дифференцируемы в точке $P_0(x_0; y_0)$, то сложная функция z = F(x; y), где

 $u = u(x,y); \quad v = v(x,y), \quad \partial u \phi \phi$ еренцируема в точке $P_0(x_0;y_0),$ причем ее частные производные вычисляются по формулам:

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x},$$
$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y}.$$

▶Докажем первую из формул. В точке $P_0(x_0;y_0)$ переменной x дадим приращение Δx , сохранив y_0 постоянной. Тогда функции u и v получат частные приращения $\Delta_x u$, $\Delta_x v$, а функция z — полное приращение Δz (так как $\Delta_x u$ и $\Delta_x v$ — приращения по обоим промежуточным аргументам). Функция z = f(x;y) дифференцируема в точке $M_0(u_0;v_0)$, поэтому ее приращение в этой точке представимо в виде:

$$\Delta z = \frac{\partial z}{\partial u} \Delta_x u + \frac{\partial z}{\partial v} \Delta_x v + \alpha \Delta_x u + \beta \Delta_x v.$$

Разделим данное равенство на $\Delta x \neq 0$:

$$\frac{\Delta z}{\Delta x} = \frac{\partial z}{\partial u} \frac{\Delta_x u}{\Delta x} + \frac{\partial z}{\partial v} \frac{\Delta_x v}{\Delta x} + \frac{1}{\Delta x} \alpha \Delta_x u + \frac{1}{\Delta x} \beta \Delta_x v.$$

Если $\Delta x \to 0$, то $\Delta_x u \to 0$ и $\Delta_x v \to 0$ в силу непрерывности функций u(x,y) и v(x,y) ,

$$\lim_{\Delta x \to 0} \frac{\Delta_x u}{\Delta x} = \frac{\partial u}{\partial x}, \quad \lim_{\Delta x \to 0} \frac{\Delta_x v}{\Delta x} = \frac{\partial v}{\partial x},$$
$$\frac{1}{\Delta x} \alpha \Delta_x u = \alpha \frac{\Delta_x u}{\Delta x}, \quad \frac{1}{\Delta x} \beta \Delta_x v = \beta \frac{\Delta_x v}{\Delta x}.$$

Переходя к пределу и учитывая, что $\lim_{\Delta x \to 0} \alpha \frac{\Delta_x u}{\Delta x} = 0$,

$$\lim_{\Delta x \to 0} \beta \frac{\Delta_x v}{\Delta x} = 0 , \text{ имеем}$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x}.$$

Аналогично доказывается $\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y}$.

Замечание. Для функции трех переменных w = f(u,v,t), каждая из которых, в свою очередь, является функцией независимых переменных x, y, z т.е. u = u(x,y,z), v = v(x,y,z), t = t(x,y,z) и w = f(u(x,y,z),v(x,y,z),t(x,y,z)) = F(x,y,z) частные производные вычисляются по формулам

$$\frac{\partial w}{\partial x} = \frac{\partial w}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial w}{\partial v} \cdot \frac{\partial v}{\partial x} + \frac{\partial w}{\partial t} \cdot \frac{\partial t}{\partial x},$$

$$\frac{\partial w}{\partial y} = \frac{\partial w}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial w}{\partial v} \cdot \frac{\partial v}{\partial y} + \frac{\partial w}{\partial t} \cdot \frac{\partial t}{\partial y},$$

$$\frac{\partial w}{\partial z} = \frac{\partial w}{\partial u} \cdot \frac{\partial u}{\partial z} + \frac{\partial w}{\partial v} \cdot \frac{\partial v}{\partial z} + \frac{\partial w}{\partial t} \cdot \frac{\partial t}{\partial z}.$$

Аналогично для функции n, n > 3, переменных.

Частные случаи задания сложной функции w = f(u, v, t)

1. Пусть
$$w = f(u, v, t), u = u(x, y), v = v(x, y), t = t(x, y).$$

Тогда w = f(u(x,y),v(x,y),t(x,y)) = F(x,y), является сложной функцией только двух аргументов, и, значит, имеем две частные производные $\frac{\partial w}{\partial x}$, $\frac{\partial w}{\partial y}$.

2. Пусть z = f(x, y, u), y = y(x), u = u(x).

Тогда z = f(x, y(x), u(x)) = F(x) — функция одной переменной x. Найдем z_x' по общей формуле дифференцирования сложной функции:

$$\frac{dz}{dx} = \frac{\partial z}{\partial u}\frac{\partial x}{\partial x} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial x} + \frac{\partial z}{\partial u}\frac{\partial u}{\partial x}.$$

Так как y = y(x) и u = u(x) — функции только одной переменной x, то их частные производные обращаются в обыкновенные производные. Кроме того, $\frac{\partial x}{\partial x} = 1$.

Следовательно,

$$\frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \frac{dy}{dx} + \frac{\partial z}{\partial u} \frac{du}{dx}.$$

Производная $\frac{dz}{dx}$ сложной функции z = f(x, y(x), u(x)) называется **полной производной**.

Между частной $\frac{\partial z}{\partial x}$ и полной $\frac{dz}{dx}$ производными имеется существенное различие. Полная производная $\frac{dz}{dx}$ — это обыкновенная производная от z как функции x, а $\frac{\partial z}{\partial x}$ есть частная производная от z по переменной x, входящей в выражение функции непосредственно, т.е. при условии, что другие переменные (y и y зависящие от y при дифференцировании остаются постоянными).

Примеры.

1. Вычислить частные производные сложной функции двух переменных $f(u,v) = u \cdot \ln v$, где u = 3x - y; $v = x^2 + y^2$.

Решение. Имеем $u'_x=3$, $v'_x=2x$, $u'_y=-1$, $v'_y=2y$, $f'_u=\ln v$, $f'_v=\frac{u}{v}$.

Следовательно.

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial x} = 3 \ln v + 2x \frac{u}{v} = 3 \ln \left(x^2 + y^2\right) + 2x \frac{3x - y}{x^2 + y^2},$$

$$\frac{\partial f}{\partial v} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial v} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial v} = -\ln v + 2y \frac{u}{v} = -\ln \left(x^2 + y^2\right) + 2y \frac{3x - y}{x^2 + y^2}.$$

2. Найти полную производную сложной функции $z = x \sin v \cos w$, где $v = \ln \left(x^2 + 1 \right)$; $w = -\sqrt{1 - x^2}$.

Решение. По формуле имеем

$$\frac{dz}{dx} = \sin v \cos w + x \cos v \cos w \frac{2x}{x^2 + 1} - x \sin v \sin w \frac{x}{\sqrt{1 - x^2}}.$$

4. Инвариантность формы первого дифференциала функции нескольких переменных.

Найдем полный дифференциал сложной функции

z=fig(u(x,y),v(x,y)ig) в точке $P_0ig(x_0;y_0ig)$. Подставим выражения $rac{\partial z}{\partial x}$ и $rac{\partial z}{\partial v}$, определяемые равенствами

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x},$$
$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y}.$$

в формулу полного дифференциала сложной функции двух переменных $dz=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy$.

Получим

$$dz = \left(\frac{\partial z}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial z}{\partial v}\frac{\partial v}{\partial x}\right)dx + \left(\frac{\partial z}{\partial u}\frac{\partial u}{\partial y} + \frac{\partial z}{\partial v}\frac{\partial v}{\partial y}\right)dy$$

или

$$dz = \frac{\partial z}{\partial u} \left(\frac{\partial u}{\partial x} dx + \frac{\partial z}{\partial y} dy \right) + \frac{\partial z}{\partial v} \left(\frac{\partial z}{\partial x} dx + \frac{\partial v}{\partial y} dy \right).$$

Так как
$$\frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy = du$$
, $\frac{\partial v}{\partial x}dx + \frac{\partial v}{\partial y}dy = dv$, то

$$dz = \frac{\partial z}{\partial u} du + \frac{\partial z}{\partial v} dv.$$

Видно, что форма записи полного дифференциала функции двух переменных не зависит от того, являются ли u и v независимыми переменными, или функциями других независимых переменных. В этом и заключается инвариантность формы первого дифференциала функции нескольких переменных.

Вопросы для самоконтроля

- 1. Дайте определение дифференцируемости функции в точке. Как связаны непрерывность и дифференцируемость функции z = f(x, y)?
- 2. Сформулируйте и докажите необходимое условие дифференцируемости функции z = f(x, y).
- 3. Сформулируйте и докажите достаточное условие дифференцируемости функции z = f(x, y).
- 4. Что называется полным дифференциалом функции многих переменных? В чем состоит геометрический смысл?
- 5. Сформулируйте правило дифференцирования сложной функции.
- 6. В чем заключается инвариантность формы первого дифференциала?