Programming Language
A programming language is an artificial language designed to express computations that can be performed by a machine, particularly a computer. Programming languages can be used to create programs that control the behavior of a machine, to express algorithms precisely, or as a mode of human communication.
The earliest programming languages predate the invention of the computer, and were used to direct the behavior of machines such as Jacquard looms and player pianos. Thousands of different programming languages have been created, mainly in the computer field, with many more being created every year. Most programming languages describe computation in an imperative style, i.e., as a sequence of commands, although some languages, such as those that support functional programming or logic programming, use alternative forms of description.
A programming language is usually split into the two components of syntax (form) and semantics (meaning) and many programming languages have some kind of written specification of their syntax and/or semantics. Some languages are defined by a specification document, for example, the C programming language is specified by an ISO Standard, while other languages, such as Perl, have a dominant implementation that is used as a reference.
Definitions
A programming language is a notation for writing programs, which are specifications of a computation or algorithm. Some, but not all, authors restrict the term "programming language" to those languages that can express all possible algorithms. Traits often considered important for what constitutes a programming language include:
Function and target: A computer programming language is a language used to write computer programs, which involve a computer performing some kind of computation or algorithm and possibly control external devices such as printers, disk drives, robots, and so on. For example PostScript programs are frequently created by another program to control a computer printer or display. More generally, a programming language may describe computation on some, possibly abstract, machine. It is generally accepted that a complete specification for a programming language includes a description, possibly idealized, of a machine or processor for that language. In most practical contexts, a programming language involves a computer; consequently programming languages are usually defined and studied this way. Programming languages differ from natural languages in that natural languages are only used for interaction between people, while programming languages also allow humans to communicate instructions to machines.
Abstractions: Programming languages usually contain abstractions for defining and manipulating data structures or controlling the flow of execution. The practical necessity that a programming language support adequate abstractions is expressed by the abstraction principle; this principle is sometimes formulated as recommendation to the programmer to make proper use of such abstractions.
Expressive power: The theory of computation classifies languages by the computations they are capable of expressing. All Turing complete languages can implement the same set of algorithms. ANSI/ISO SQL and Charity are examples of languages that are not Turing complete, yet often called programming languages.
Markup languages like XML or HTML, which define structured data, are not generally considered programming languages. Programming languages may, however, share the syntax with markup languages if a computational semantics is defined. XSLT, for example, is a Turing complete XML dialect. Moreover, LaTeX, which is mostly used for structuring documents, also contains a Turing complete subset.
The term computer language is sometimes used interchangeably with programming language. However, the usage of both terms varies among authors, including the exact scope of each. One usage describes programming languages as a subset of computer languages. In this vein, languages used in computing that have a different goal than expressing computer programs are generically designated computer languages. For instance, markup languages are sometimes referred to as computer languages to emphasize that they are not meant to be used for programming. Another usage regards programming languages as theoretical constructs for programming abstract machines, and computer languages as the subset thereof that runs on physical computers, which have finite hardware resources. John C. Reynolds emphasizes that formal specification languages are just as much programming languages as are the languages intended for execution. He also argues that textual and even graphical input formats that affect the behavior of a computer are programming languages, despite the fact they are commonly not Turing-complete, and remarks that ignorance of programming language concepts is the reason for many flaws in input formats.

Task 1
Complete the following:
1 A programming language is an artificial language ….
2 Programming languages can be used ….
3 The earliest programming languages were used ….
4 Most programming languages describe ….
5 A programming language is usually split into ….
6 A programming language is a notation ….
7 Programming languages differ from natural languages …
8 The practical necessity is expressed by ….
9 The theory of computation classifies languages ….
10 The term computer language is sometimes used ….
11 Another usage regards ….

Task 2
Answer the questions:
1 What is a programming language?
2 What do programming languages describe?
3 What are the two components of programming languages?
4 What is the target of a computer programming language?
5 What may a programming language describe?
6 Programming languages usually contain abstractions, do they?
7 Are markup languages considered programming languages?
8 Is the term computer language sometimes used interchangeably with programming language?
