Практическое занятие 6 Локальные и глобальные экстремумы функции

- 6.1 Точки локального и глобального экстремума
- 6.2 Необходимое и достаточные условия существования локального экстремума функции
- 6.3 Глобальный экстремум функции на отрезке

6.1 Точки локального и глобального экстремума

С помощью производной функции можно произвести полное исследование функции (найти промежутки возрастания и убывания, экстремумы, точки перегиба, промежутки выпуклости и вогнутости, асимптоты графика) и построить график этой функции.

Теорема 1 Для того чтобы дифференцируемая на (a;b) функция не убывала (не возрастала) на этом интервале, необходимо и достаточно, чтобы $f'(x) \ge 0$ ($f'(x) \le 0$) для всех $x \in (a;b)$. Если же для любого $x \in (a;b)$ f'(x) > 0 (f'(x) < 0), то функция f возрастает (убывает) на этом интервале.

Точка x_0 называется точкой локального максимума (минимума) функции f(x) если существует δ -окрестность точки x_0 , такая, что для всех $x\in \mathring{U}(\delta;x_0)$ выполняется неравенство (рисунок 6.1)

$$\Delta f(x_0) = f(x) - f(x_0) < 0$$

$$(\Delta f(x_0) = f(x) - f(x_0) > 0).$$

Значение $f(x_0)$ называется локальным максимумом (минимумом) функции.

Обозначается:

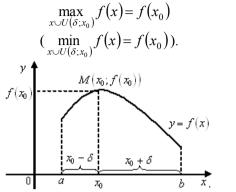


Рисунок 6.1 – Локальный максимум $M(x_0, f(x_0))$

Точки максимума или минимума функции называются *точками экстремума функции*, а максимумы и минимумы функции называются экстремумами функции.

Экстремумы функции носят локальный характер — это наибольшее или наименьшее значения функции по сравнению с близлежащими ее значениями.

Если функция f(x) на [a;b] имеет несколько максимумов и минимумов, то возможен случай, когда максимум функции меньше ее минимума.

Наименьшее и наибольшее значения функции на [a;b] называются абсолютными минимумом и максимумом или глобальными экстремумами функции f(x)

Обозначаются:
$$\min_{x \in [a;b]} f(x)$$
, $\max_{x \in [a;b]} f(x)$.

6.2 Необходимое и достаточные условия существования локального экстремума функции

Теорема 2 (необходимое условие экстрему-ма) Если в точке x_0 функция f(x) достигает экстремума, то ее производная в этой точке равна нулю или не существует.

Из теоремы 2 следует, что в точках экстремума функции f(x) касательная к ее графику:

- параллельна оси абсцисс, если существует $f'(x_0) = 0$ (рисунок 6.2, a):
- параллельна оси ординат, если $f'(x_0)$ бесконечна (рисунок 6.2, б);
- существуют не совпадающие левая и правая касательные, если $f'(x_0) \neq f'(x_0)$ (рисунок 6.2,в).

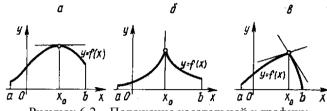


Рисунок 6.2 – Положение касательной к графику функции в точках экстремума

Точки, в которых производная функции y = f(x) обращается в нуль или не существует, называют *критическими* или *точками* возможного экстремума. Точки, в которых производная функции y = f(x) обращается в нуль, называют *стационарными*.

Критическая точка x_0 называется *угловой точкой* функции f(x) если $f_-'(x_0) \neq f_+'(x_0)$ (рисунок 6.2, в). Критическая точка x_0 называется *точкой возврата* функции, если ее левая $f_-'(x_0)$ и правая $f_+'(x_0)$ производные бесконечны (рисунок 6.2, б).

Не всякая критическая точка функции f(x) является точкой ее локального экстремума.

Теорема 3 (первый достаточный признак существования экстремума функции) Пусть x_0 – критическая точка непрерывной функции f(x). Если f'(x) при переходе через точку x_0 меняет знак c «+» на «-», то x_0 – точка локального максимума; если f'(x) при переходе через точку x_0 меняет знак c «-» на «+», то x_0 – точка локального минимума; если f'(x) при переходе через точку x_0 не меняет знак, то x_0 не является точкой локального экстремума.

Теорема 4 (второй достаточный признак существования экстремума функции) Стационарная точка x_0 функции f(x), дважды дифференцируемой в $U(\delta;x_0)$, является точкой локального минимума f(x), если $f''(x_0) > 0$, и точкой локального максимума, если $f''(x_0) < 0$ (рисунок 6.3).

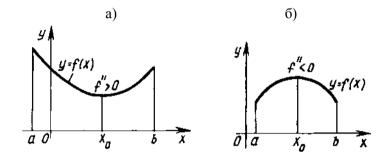


Рисунок 6.3 – Локальные минимум (а) и максимум (б) функции

Teopema 5 (третий достаточный признак существования экстремума функции) Пусть функция f(x) — п раз непрерывно дифференцируема в точке x_0 и в этой точке

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0, \ f^{(n)}(x_0) \neq 0.$$

Тогда:

- 1) если n четное u $f^{(n)}(x_0) < 0$, то x_0 точка локального максимума.
- 2) если n четное u $f^{(n)}(x_0) > 0$, то x_0 точка локального минимума;
- 3) если n нечетное, то x_0 не является точкой локального экстремума.

6.3 Глобальный экстремум функции на отрезке

Одной из основных характеристик функции f(x) на отрезке [a;b] являются ее глобальные экстремумы, т. е. наибольшее и наименьшее значения f(x) на [a;b].

Если функция f(x) непрерывна на [a;b], то наибольшее и наименьшее значения она принимает на концах этого отрезка или в точках ее локального экстремума. Следовательно, для отыскания глобальных экстремумов $\min_{x \in [a;b]} f(x)$, $\max_{x \in [a;b]} f(x)$ функции f(x), надо найти ее значения на концах отрезка [a;b], в точках локального экстремума и выбрать соответственно наименьшее и наибольшее из них.

Если
$$x_1$$
, x_2 , ..., x_n – точки локальных экстремумов, то
$$\min_{x \in [a;b]} f(x) = \min\{f(a); f(b); f(x_1); ...; (x_n)\},$$

$$\max_{x \in [a;b]} f(x) = \max\{f(a); f(b); f(x_1); ...; f(x_n)\}$$

Вопросы для самоконтроля

- 1 Какие условия должны выполнятся, чтобы функция возрастала, убывала, была неубывающей и невозрастающей?
 - 2 Какая точка называется точкой локального экстремума?
 - 3 Какая точка называется точкой абсолютного экстремума?
- 4 Сформулируйте необходимое условие локального экстремума.
 - 5 Сформулируйте достаточные условия экстремума.
 - 6 Как находится глобальный экстремум функции на отрезке?

Решение типовых примеров

1 Найти интервалы монотонности и точки экстремума функции $y = \frac{|x-1|}{r^2}$.

Peuehue. Областью определения данной функции является множество $D(f) = (-\infty;0) \cup (0;+\infty)$.

$$y' = \begin{cases} \frac{x-2}{x^3} & \text{при } x \in (-\infty;0) \cup (0;1), \\ \frac{2-x}{x^3} & \text{при } x \in (1;+\infty). \end{cases}$$

и обращается в нуль в точке x=2. При этом производная не существует в точках x=0 и x=1. Поэтому точками возможного экстремума являются $x_1=0$, $x_2=1$, $x_3=2$. Они разбивают область определения на четыре интервала монотонности: $(-\infty;0)$, (0;1), (1;2), $(2;+\infty)$.

Видно, что y'(x) > 0 при $x \in (-\infty;0) \cup (1;2)$, y'(x) < 0 при $x \in (0;1) \cup (2;+\infty)$. Следовательно, функция f(x) монотонно возрастает при $x \in (-\infty;0) \cup (1;2)$, и монотонно убывает при $x \in (0;1) \cup (2;+\infty)$. Согласно первому достаточному условию локального экстремума, в точке $x_3 = 2$ функция достигает максимума, $y_{\max} = y(2) = \frac{1}{4}$, а в точке $x_2 = 1$ функция имеет минимум, $y_{\max} = y(1) = 0$.

2 Найти экстремумы функции $y = 1 - (x - 2)^{\frac{4}{5}}$.

Peuehue. Данная функция определена при всех $x \in \mathbf{R}$. Производная данной функции имеет вид

$$y' = -\frac{4}{5}(x-2)^{-\frac{1}{5}} = -\frac{4}{5\sqrt[5]{x-2}}$$
.

Производная не обращается в нуль ни при каких значениях x и не существует при x=2 . Поэтому точка x=2 является точкой возможного экстремума функции.

При x < 2 имеем y' > 0, при x > 2 имеем y' < 0. Согласно первому достаточному условию точка x = 2 является точкой максимума, $y_{\rm max} = 1$.

3 Найти экстремумы функции $y = x\sqrt{1-x^2}$. $Pe \ w \ e \ h \ u \ e$. Данная функция определена при $x \in [-1;1]$. Найдем первую производную

$$y' = \frac{1 - 2x^2}{\sqrt{1 - x^2}}$$
.

Решая уравнение y' = 0, найдем

$$\frac{1-2x^2}{\sqrt{1-x^2}} = 0 \implies 1-2x^2 \implies x_1 = -\frac{1}{\sqrt{2}}, \ x_2 = \frac{1}{\sqrt{2}}.$$

При этом функция y' не существует при $x = \pm 1$.

Значит, точками возможного экстремума являются $x_1=-1/\sqrt{2}$, $x_2=1/\sqrt{2}$, $x_3=-1$, $x_4=1$. В точках $x=\pm 1$ экстремума нет, так как по определению производной точками экстремума могут быть лишь внутренние точки области определения.

Вторая производная функции имеет вид

$$y'' = \frac{x(2x^2 - 3)}{(1 - x^2)^{\frac{3}{2}}}.$$

Так как $y''\left(-\frac{1}{\sqrt{2}}\right) = -\frac{1(1-3)}{\sqrt{2}\left(1-\frac{1}{2}\right)^{\frac{3}{2}}} > 0$, то функция имеет в

точке $x_1 = -1/\sqrt{2}$ минимум, и

$$y_{\min} = y \left(-\frac{1}{\sqrt{2}} \right) = -\frac{1}{2}$$
.

В точке $x_2 = 1/\sqrt{2}$ получим $y''\left(\frac{1}{\sqrt{2}}\right) = \frac{1(1-3)}{\sqrt{2}\left(1-\frac{1}{2}\right)^{\frac{3}{2}}} < 0$.

Значит в точке $x_2 = 1/\sqrt{2}$ функция имеет максимум, и

$$y_{\text{max}} = y \left(\frac{1}{\sqrt{2}} \right) = \frac{1}{2}$$
.

4 Найти на отрезке [-1;4] глобальные экстремумы функции $f(x) = x^3 - 6x^2 + 9x \ .$

Peuehue. Определяем точки возможного экстремума (стационарные точки) функции f(x):

$$f'(x) = 3x^2 - 12x + 9$$
, $3x^2 - 12x + 9 = 0$.

Значит, $x_1 = 1$ и $x_2 = 3$.

Так как при -1 < x < 1 имеем y' > 0, при 1 < x < 3 имеем y' < 0, то $x_1 = 1$ является точкой максимума. Так как при 1 < x < 3 имеем y' < 0 и при 3 < x < 4 имеем y' > 0, то $x_2 = 3$ является точкой минимума.

Вычисляем значения f(x) на концах отрезка [-1;4] и в стационарных точках, принадлежащих отрезку:

$$f(-1)=-16$$
, $f(4)=4$, $f(1)=4$, $f(3)=0$.

Тогда

$$\min_{x \in [-1;4]} f(x) = \min\{-16,4,4,0\} = -16,$$

$$\max_{x \in [-1;4]} f(x) = \max\{-16,4,4,0\} = 4$$

Наименьшее значение данная функция принимает на левом конце отрезка в точке x=-1, наибольшее — в точке x=1 и на правом конце отрезка в точке x=4. График данной функции изображен на рисунке 6.4.

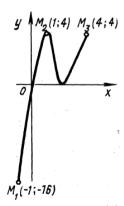


Рисунок 6.4 – График функции $f(x) = x^3 - 6x^2 + 9x$ на отрезке [-1;4]

5 Баржу, палуба которой на $h=4\,\mathrm{m}$ ниже уровня пристани, подтягивают к ней при помощи каната, наматываемого на ворот, со скоростью $v=2\,\mathrm{m/c}$. С каким ускорением движется баржа в момент, когда она удалена от пристани на расстояние $l=8\,\mathrm{m}$ (по горизонтали)?

Pewehue. Пусть через t секунд после начала движения баржа (рисунок 6.5) находится на расстоянии l(t) м от пристани (по горизонтали).

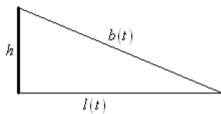


Рисунок 6.5 – Геометрическая интерпретация задачи 5

Тогда длина каната представляет собой функцию

$$b(t) = \sqrt{l^2(t) + h^2} ,$$

производная которой имеет вид

$$b'(t) = \frac{l(t)l'(t)}{\sqrt{l^2(t) + h^2}}$$
.

Поскольку канат подтягивают, то по условию задачи b'(t) = -2. Отсюда

$$-2 = \frac{l(t)l'(t)}{\sqrt{l^2(t) + h^2}}.$$

Разрешая относительно l'(t), получим скорость движения баржи

$$l'(t) = \frac{-2\sqrt{l^2(t) + h^2}}{l(t)} = -2\frac{b(t)}{l(t)}.$$

Ускорение движения баржи есть вторая производная от функции l(t):

$$a(t) = -l'(t) = 2 \frac{b'(t) \cdot l(t) - b(t) \cdot l'(t)}{l^2(t)}$$
.

Если t_0 – тот момент времени, когда $l(t_0)$ =8, то

$$b(t_0) = \sqrt{64 + 16} = 4\sqrt{5} ,$$

$$l'(t_0) = \frac{-2 \cdot 4\sqrt{5}}{8} = -\sqrt{5} ,$$

$$a(t_0) = 2 \frac{b'(t_0) \cdot l(t_0) - b(t_0) \cdot l'(t_0)}{l^2(t_0)} = \frac{1}{8} \text{ (m/c}^2).$$

6 Боковая сторона равнобедренной трапеции равна ее меньшему основанию. Каков должен быть угол при большем основании, чтобы площадь трапеции была наибольшей?

Pewehue. На рисунке 6.6 изображена трапеция ABCD. Пусть AB=a. Тогда по условию AB=CD=BC=a. Пусть BE и CF — высоты трапеции; BE=CF. Полагая $\angle BAD=\alpha$, выразим площадь трапеции как функцию от α :

$$S = S(\alpha), \ 0 < \alpha < \frac{\pi}{2}$$

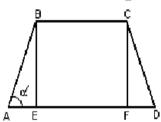


Рисунок 6.6 – Геометрическая интерпретация задачи 6

Площадь трапеции АВСО равна

$$S_{ABCD} = S_{ABE} + S_{BCFE} + S_{CDF}$$

Из геометрических соображений имеем:

$$S_{ABE} = S_{CDF} = \frac{1}{2} AE \cdot BE = \frac{1}{2} a \cos \alpha \cdot a \sin \alpha = \frac{1}{4} a^2 \sin 2\alpha ,$$

$$S_{BCEE} = BC \cdot BE = a^2 \sin \alpha .$$

Тогда площадь трапеции равна

$$S(\alpha) = \frac{1}{2}a^2 \sin 2\alpha + a^2 \sin \alpha .$$

Исследуем функцию $S(\alpha)$ на экстремум.

$$S'(\alpha) = a^2(\cos 2\alpha + \cos \alpha).$$

Решая уравнение $S'(\alpha) = 0$, получим:

$$\cos 2\alpha + \cos \alpha = 0 \implies \cos \alpha = -1$$
 и $\cos \alpha = \frac{1}{2}$.

Отсюда

$$\alpha_1 = \pi + 2n\pi$$
, $n \in \mathbb{Z}$,

$$\alpha_2 = \frac{\pi}{3} + 2k\pi$$
, $k \in \mathbb{Z}$.

Единственным решением этого уравнения, лежащим на $\left(0, \frac{\pi}{2}\right)$

является $\alpha = \frac{\pi}{3}$. Убедимся, что при $\alpha = \frac{\pi}{3}$ функция $S(\alpha)$ достигает максимума.

$$S''(\alpha) = -a^2(2\sin 2\alpha + \sin \alpha)$$

Так как
$$\sin \frac{2\pi}{3} > 0$$
, $\sin \frac{\pi}{3} > 0$, $a > 0$, то $S''\left(\frac{\pi}{3}\right) < 0$.

Значит, при $\alpha = \frac{\pi}{3}$ функция $S(\alpha)$ достигает наибольшего значения на интервале $\left(0; \frac{\pi}{2}\right)$. Угол при большем основании трапеции равен $\alpha = \frac{\pi}{3}$.

Задания для аудиторной работы

1 Найти интервалы монотонности и точки экстремума следующих функций:

a)
$$v = x^2 (1 - x\sqrt{x})$$
:

a)
$$y = x^2(1 - x\sqrt{x});$$
 $r) y = (2x - 1)\sqrt[3]{(x - 3)^2};$

$$6) y = \operatorname{ch}^2 x;$$

$$д) y = \ln(x^2 + 1);$$

B)
$$y = x + \sqrt{x-3}$$
; e) $y = \frac{|x+1|}{(x-1)^2}$.

e)
$$y = \frac{|x+1|}{(x-1)^2}$$

2 Найти глобальные экстремумы функции на отрезке:

a)
$$y = x^4 - 2x^2 + 3$$
, $[-3;2]$;

6)
$$y = 2x^3 - 5x^2 + 7x - 3$$
, $[-2;2]$;

B)
$$y = \arctan \frac{1-x}{1+x}$$
, [0;1].

3 Найти наибольшее и наименьшее значения функции в ее области определения.

4 Разложить число 80 на два слагаемых так, чтобы их произведение было наибольшим.

5 Пункт B находится на расстоянии 60 км от железной дороги. Расстояние по железной дороге от пункта A до ближайшей к пункту B точки C составляет 285 км. На каком расстоянии от точки С надо построить станцию, чтобы затрачивать наименьшее время на передвижение между пунктами A и B, если скорость движения по железной дороге равна 52 км/ч, а скорость движения по шоссе равна 20 км/ч?

6 Проволока длиной l согнута в прямоугольник. Каковы размеры этого прямоугольника, если площадь его наибольшая?

Задания для домашней работы

1 Найти интервалы монотонности и точки экстремума следующих функций:

a)
$$y = x^3 - 5x^2 + 3x - 2$$
; $r) y = \frac{\ln x^2}{r}$;

$$\Gamma) \ \ y = \frac{\ln x^2}{x} \, ;$$

$$\delta) \ \ y = \sinh^2 x$$

б)
$$y = \sinh^2 x$$
; $\qquad \qquad$ д) $y = x - \sqrt{2 - x}$;

B)
$$y = (x-1)^{\frac{6}{7}}$$

B)
$$y = (x-1)^{\frac{6}{7}}$$
; e) $y = |x+3| - \frac{x}{x^2 - 4}$.

2 Найти глобальные экстремумы функции на отрезке:

a) $y = x^3 - 2x^2 + x - 2$, [-4;1];

6) $y = x^4 - 3x^3 + 15$, [-2;4];

B) $y = x + \sqrt{x}$, [0;4].

3 Найти наибольшее и наименьшее значения функции в ее области определения.

4 Найти наибольшее значение произведения двух положительных чисел, сумма которых постоянна и равна 34.

 $5 \ B$ шар радиуса R вписать цилиндр наибольшего объема.

6 Для доставки продукции завода N в город A (рисунок 6.7) строится шоссе NP, соединяющее завод с железной дорогой AB = 500 км, проходящей через город A. Стоимость перевозок по шоссе вдвое больше, чем по железной дороге. К какому пункту P нужно подвести шоссе, чтобы общая стоимость перевозок продукции завода N в город A по железной дороге и шоссе была наименьшей? Здесь NB = 100 км.

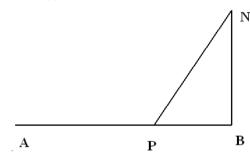


Рисунок 6.7 – Геометрическая интерпретация задачи 6 из домашней работы

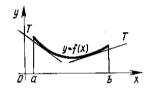
Практическое занятие 7 Исследование функций

- 7.1 Выпуклость и вогнутость графика функции
- 7.2 Точки перегиба графика функции
- 7.3 Асимптоты графика функции
- 7.4 Общая схема исследования функции

7.1 Выпуклость и вогнутость графика функции

График дифференцируемой функции y = f(x) называется вогнутым на интервале (a;b), если дуга кривой y = f(x) $\forall x \in (a;b)$ расположена выше любой касательной T, проведенной к графику этой функции (рисунок 7.1).

График дифференцируемой функции y = f(x) называется выпуклым на интервале (a;b), если дуга кривой y = f(x) $\forall x \in (a;b)$ расположена ниже любой касательной T, проведенной к графику этой функции (рисунок 7.2).



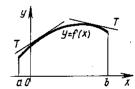


Рисунок 7.1 – Вогнутость графика Рисунок 7.2 – Выпуклость графика

Теорема 1 (достаточный признак вогнутости (выпуклости) графика функции) Если функция y=f(x) на интервале (a;b) дважды дифференцируема и f''(x)>0 $\forall x\in (a;b)$, то график этой функции на (a;b) вогнутый (выпуклый вниз). Если функция y=f(x) на (a;b) дважды дифференцируема и f''(x)<0 $\forall x\in (a;b)$, то график этой функции на (a;b) выпуклый.

7.2 Точки перегиба графика функции

Точка $M(x_0; f(x_0))$ графика дифференцируемой функции y = f(x), в которой направление выпуклости меняется на противоположное, называется *точкой перегиба* (рисунок 7.3).

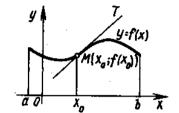


Рисунок 7.3 – Точка $M(x_0; f(x_0))$ – точка перегиба графика функции

Теорема 2 (необходимое условие точек перегиба) Если функция f(x) имеет в точке $M(x_0; f(x_0))$ перегиб и существует вторая производная f''(x) в точке x_0 , то $f''(x_0)=0$.

Обратное утверждение верно не всегда.

Точки $M(x_0; f(x_0))$ графика функции y = f(x) называются *точками возможного перегиба*, если $f''(x_0) = 0$ или $f''(x_0)$ не существует.

Теорема 3 (достаточное условие существования точек перегиба) Если для функции f(x) вторая производная f''(x) в некоторой точке x_0 обращается в нуль или не существует и при переходе через нее меняет свой знак, то точка $M(x_0; f(x_0))$ является точкой перегиба графика функции.

7.3 Асимптоты графика функции

При исследовании поведения функции на бесконечности, т.е. при $x \to +\infty$ и при $x \to -\infty$, или вблизи точек разрыва второго рода часто оказывается, что расстояния между точками графика функции и точками некоторой прямой с теми же абсциссами

сколь угодно малы. Такая прямая называют *асимптотой графи-ка*.

Прямая $x = x_0$ называется вертикальной асимптотой графика функции y = f(x), если хотя бы один из односторонних пределов в точке x_0 равен бесконечности:

$$\lim_{x \to x_0 - 0} = f(x) \pm \infty \quad \text{или } \lim_{x \to x_0 + 0} = f(x) \pm \infty .$$

Очевидно, что непрерывные на множестве ${\bf R}$ функции вертикальных асимптот не имеют; такие асимптоты существуют только в точках разрыва второго рода функции y=f(x). Следовательно, для отыскания вертикальных асимптот графика функции надо определить те значения x, при которых хотя бы один из односторонних пределов функции бесконечен.

Прямая y = kx + b называется наклонной асимптотой графика функции y = f(x) при $x \to +\infty$ ($x \to -\infty$), если функцию f(x) можно представить в виде:

$$f(x) = kx + b + \alpha(x),$$

где $\alpha(x) \to 0$ при $x \to +\infty$ $(x \to -\infty)$.

Teopema 4 Для того чтобы график функции y = f(x) имел наклонную асимптоту y = kx + b, необходимо и достаточно, чтобы существовали конечные пределы:

$$\lim_{x \to \pm \infty} = \frac{f(x)}{x} = k , \lim_{x \to \pm \infty} (f(x) - kx) = b .$$

Если k = 0, то прямая y = b называется горизонтальной асимптотой.

7.4 Общая схема исследования функции

Исследование дважды дифференцируемой функции y = f(x) на D(f) (за исключением, быть может, конечного множества точек) и построение ее графика может быть выполнено по следующей схеме:

1) находится D(f), определяются точки разрыва, нули, точки пересечения графика функции с осью Oy, периодичность, симметрия;

- 2) находятся наклонные и горизонтальные асимптоты графика функции (если они существуют);
- 3) с помощью первой производной функции определяются стационарные точки и интервалы монотонности;
- 4) с помощью второй производной определяются интервалы вогнутости и выпуклости графика функции, точки перегиба;
 - 5) находятся локальные экстремумы функции на D(f).

По результатам исследований строится график функции. Если исследуемая функция четная или нечетная, то достаточно исследовать функцию и построить ее график для положительных значений аргумента из области определения. Иногда для удобства результаты исследования сводятся в таблицу, построение которой приведено в типовом примере 5.

При решении конкретных задач отдельные этапы схемы могут быть расширены, другие же могут оказаться излишними или не выполнимыми.

Вопросы для самоконтроля

- 1 Какой график функции называется выпуклым, вогнутым?
- 2 Сформулируйте достаточное условие выпуклости и вогнутости.
 - 3 Какая точка графика называется точкой перегиба?
- 4 Сформулируйте необходимое и достаточное условия точек перегиба.
- 5 Какая прямая называется вертикальной (наклонной, горизонтальной) асимптотой?
 - 6 Перечислите основные этапы исследования функции.

Решение типовых примеров

1 Найти промежутки выпуклости и вогнутости графика функции $v = x^5 + 5x - 6$.

Решение. Имеем:

$$y' = 5x^4 + 5$$
,
 $y'' = 20x^3$.

Если x < 0, то $y^{"} < 0$ и кривая выпукла.

Если x > 0, то y'' > 0 и кривая вогнута.

Итак, кривая выпукла на промежутке $(-\infty;0)$, вогнута на промежутке $(0;+\infty)$.

2 Найти точки перегиба графика функции:

a)
$$y = (x+1)^2(x-2)$$
; 6) $y = \sqrt[3]{(x-5)^5} + 2$.

 $P\,e\,w\,e\,H\,u\,e$. a) первая и вторая производные равны соответственно

$$y' = 3(x^2 - 1),$$

 $y'' = 6x.$

Так как $y^{"}=0$ в точке x=0, то исследуем эту точку на перегиб. В окрестности точки x=0 при x<0, то $y^{"}<0$ и кривая выпукла, при x>0, то $y^{"}>0$ и кривая вогнута. Следовательно, x=0 — точка перегиба, при этом $y_{\rm nep}=-2$.

б) имеем:

$$y' = \frac{5}{3}(x-5)^{\frac{2}{3}}, \ y'' = \frac{10}{9\sqrt[3]{x-5}}.$$

Вторая производная не обращается в нуль ни при каких значениях x и не существует в точке x=5. В окрестности точки x=5 получим при x<5, то $y^{"}<0$ и кривая выпукла, при x>5, то $y^{"}>0$ и кривая вогнута. Следовательно, x=5 — точка перегиба, при этом $y_{\rm nep}=2$.

3 Найти асимптоты графика функции $y = \frac{x^2 - 2x + 3}{x + 2}$.

Pe u e + u e. 1) функция определена на промежутках $(-\infty; -2) \cup (-2; +\infty)$.

Так как

$$\lim_{x \to -2-0} \frac{x^2 - 2x + 3}{x + 2} = -\infty, \ \lim_{x \to -2+0} \frac{x^2 - 2x + 3}{x + 2} = +\infty,$$

то прямая x = -2 является вертикальной асимптотой.

2) наклонные асимптоты:

$$k = \lim_{x \to \infty} \frac{x^2 - 2x + 3}{x(x+2)} = 1,$$

$$b = \lim_{x \to \infty} \left[f(x) - kx \right] = \lim_{x \to \infty} \left[\frac{x^2 - 2x + 3}{(x+2)} - x \right] = -4.$$

Следовательно, наклонная асимптота имеет вид

$$y = x - 4$$
.

3) горизонтальных асимптот нет, так как

$$\lim_{x\to\infty}\frac{x^2-2x+3}{(x+2)}=\infty.$$

4 Исследовать функцию $y = \frac{x^3}{3 - x^2}$ и построить ее график.

Решение. Для построения графика функции проведем ее исследование по приведенной схеме.

1) находим D(f), определяем точки разрыва, нули, точки пересечения графика функции с осью Оу, периодичность, симметрию. Функция неопределенна в точках, где знаменатель обращается в нуль, т. е. при $x_1 = -\sqrt{3}$, $x_2 = \sqrt{3}$. Следовательно, область определения есть $D(f) = \left(-\infty; -\sqrt{3}\right) \cup \left(-\sqrt{3}; \sqrt{3}\right) \cup \left(\sqrt{3}; \infty\right)$.

Исследуем поведение функции в окрестностях точек $x_1 = -\sqrt{3}$, $x_2 = \sqrt{3}$:

$$\lim_{x \to \sqrt{3} - 0} \frac{x^3}{3 - x^2} = +\infty, \quad \lim_{x \to \sqrt{3} + 0} \frac{x^3}{3 - x^2} = -\infty,$$

$$\lim_{x \to -\sqrt{3} - 0} \frac{x^3}{3 - x^2} = -\infty, \quad \lim_{x \to \sqrt{3} + 0} \frac{x^3}{3 - x^2} = +\infty.$$

Следовательно, точки $x_1 = -\sqrt{3}$, $x_2 = \sqrt{3}$ являются точками разрыва второго рода.

Поскольку $\lim_{x\to -\infty}\frac{x^3}{3-x^2}=+\infty$ и $\lim_{x\to +\infty}\frac{x^3}{3-x^2}=-\infty$, то здесь функция неограничена.

График функции пересекает координатные оси в только в начале координат, так как $y = 0 \iff x = 0$.

Функция не является периодичной.

Функция нечетная, так как область определения D(f) симметрична и f(-x) = -f(x), т. е.

$$\frac{(-x)^3}{3-x^2} = \frac{-x^3}{3-x^2}.$$

Следовательно, график функции симметричен относительно начала координат и достаточно исследовать функцию для $x \ge 0$.

2) асимптоты графика функции. Поскольку односторонние пределы в точках $x_1=-\sqrt{3}$, $x_2=\sqrt{3}$ раны бесконечности, то прямые $x=-\sqrt{3}$ и $x=\sqrt{3}$ являются вертикальными асимптотами графика функции.

Вычислим пределы:

$$k = \lim_{x \to \infty} = \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^3}{(3 - x^2)x} = -1,$$

$$b = \lim_{x \to \infty} (f(x) - kx) = \lim_{x \to \infty} \left(\frac{x^3}{3 - x^2} + x\right) = \lim_{x \to \infty} \frac{x^3 + 3x - x^3}{3 - x^2} = 0,$$

Прямая y = -x является наклонной асимптотой графика функции.

3) точки возможного экстремума и интервалы монотонности функции. Находим первую производную функции:

$$y' = \frac{3x^2(3-x^2)+2x^4}{(3-x^2)^2} = \frac{x^2(9-x^2)}{(3-x^2)^2}.$$

Функция y' определена на D(f). В промежутке $[0;+\infty)$ производная обращается в нуль в точках $x_1 = 0$, $x_2 = 3$.

Определяем интервалы монотонности из неравенств y' > 0 и y' < 0 для любого $x \ge 0$.

Имеем:

$$\frac{x^2(9-x^2)}{(3-x^2)^2} > 0, 9-x^2 > 0 \implies 0 < x < 3,$$

т. е. функция возрастает на $(0; \sqrt{3}) \cup (\sqrt{3}; 3)$.

Аналогично:

$$\frac{x^2(9-x^2)}{(3-x^2)^2} < 0, \ 9-x^2 < 0 \implies x > 3,$$

т. е. функция убывает на [3;∞).

4) промежутки выпуклости и вогнутости, точки перегиба.

Вычисляем вторую производную функции $y = \frac{x^3}{3 - x^2}$:

$$y'' = \frac{(18x - 4x^3)(3 - x^2)^2 - (9x^2 - x^4)2(3 - x^2)(-2x)}{(3 - x^2)^4} = \frac{6x(9 - x^2)}{(3 - x^2)^3}.$$

Функция y" определена на области определения D(f).

Находим интервалы вогнутости и выпуклости графика функции из неравенств y'' > 0, y'' < 0 для любого $x \ge 0$.

Имеем:

$$\frac{6x(9-x^2)}{(3-x^2)^3} > 0,$$

$$\begin{cases} x > 0, \\ 3-x^2 > 0 \end{cases} \Rightarrow \begin{cases} x > 0, \\ -\sqrt{3} < x < \sqrt{3} \Rightarrow 0 < x < \sqrt{3}, \end{cases}$$

т. е. кривая вогнута на $(0; \sqrt{3})$.

Аналогично:

$$\frac{6x(9+x^2)}{(3-x^2)^3} < 0,$$

$$\begin{cases} x > 0, \\ 3-x^2 < 0 \end{cases} \Rightarrow \begin{cases} x > 0, \\ 3 < x^2 \Rightarrow \begin{cases} x > 0, \\ x < -\sqrt{3}, x > \sqrt{3} \end{cases} \Rightarrow x > \sqrt{3},$$

т. е. кривая выпукла на $(\sqrt{3}; \infty)$.

В точке x=0 имеем y''=0 и y''(x)<0 в окрестности $U(\delta;0-0)$, а y''(x)>0 в окрестности $U(\delta;0+0)$. Значит, точка кривой с абсциссой x=0 отделяет интервал выпуклости кривой от ее интервала вогнутости. Поэтому O(0;0) является точкой

перегиба кривой.

5) локальные экстремумы. Определяем с помощью второй производной y"(x) локальные экстремумы. Так как y"(3)=0, точка A_1 с абсциссой x=3 является точкой локального максимума. В силу симметрии графика функции точка A_2 с абсциссой x=-3 является точкой локального минимума. Итак, $\max_{x\in U(\delta;3)}y(x)=-4,5$, $\min_{x\in U(\delta;-3)}y(x)=4,5$.

Результаты исследования функции заносим в таблицу 7.1.

Таблица 7.1 – Результаты исследования функции

_	- warming with a conference of the control of the c						
	x	0	$\left(0;\sqrt{3}\right)$	$\sqrt{3}$	$\left(\sqrt{3};3\right)$	3	(3;∞)
	y'	0	+	Не сущ.	+	0	_
	<i>y</i> "	0	+	Не сущ.	_	_	_
	У	0		Не сущ.		-4,5	_
		(т.перег)				max	

Исходя из результатов, содержащихся в таблице 7.1, строим график данной функции для $x \in [0; \infty)$. Используя нечетность функции, достраиваем ее график на всей области определения (рисунок 7.4).

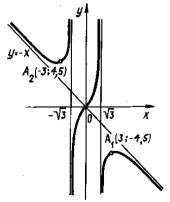


Рисунок 7.4 – График функции $y = \frac{x^3}{3 - x^2}$

Задания для аудиторной работы

1 Найти интервалы выпуклости и точки перегиба функций:

a)
$$f(x) = 2x^4 - 3x^2 + x - 1$$
; e) $f(x) = \frac{1}{1 - x^2}$;

e)
$$f(x) = \frac{1}{1 - x^2}$$

$$f(x) = \frac{\sqrt{x}}{x+1};$$

ж)
$$f(x) = x - \cos x$$
;

B)
$$f(x) = e^{-x^2}$$
;

и)
$$f(x) = (x^2 - 1)^3$$
;

$$f(x) = 1 + x^2 - \frac{x^4}{2}$$

д)
$$f(x) = xe^{-\frac{x^2}{4}}$$
;

$$\pi) f(x) = \frac{1}{(x-1)^2}.$$

2 Найти асимптоты графиков функций:

a)
$$y = \sqrt{\frac{x^3}{x - 2}}$$
;

$$\Gamma) \ y = x^2 e^{-x};$$

б)
$$y = \frac{\ln^2 x}{x} - 3x$$
; д) $y = x + \arctan 2x$;

д)
$$y = x + \operatorname{arctg} 2x$$
;

B)
$$y = 2x - \frac{\cos x}{x}$$
; e) $y = 2^{\frac{1}{1-x}}$.

e)
$$y = 2^{\frac{1}{1-x}}$$
.

3 Исследовать функции:

a)
$$f(x) = x^3 - 3x + 2$$

6)
$$f(x) = (x-1)^2(x+2)$$

6)
$$f(x) = (x-1)^2(x+2)$$
; e) $f(x) = x^3 - 5x^2 + 3x - 1$;

B)
$$f(x) = \frac{x+1}{x^2+1}$$

в)
$$f(x) = \frac{x+1}{x^2+1}$$
; ж) $f(x) = x + \frac{7}{x} - \frac{3}{x^2}$;

$$\Gamma) f(x) = \frac{x^3}{x^2 - 1};$$

$$\text{u) } f(x) = \frac{x^2 + x}{x - 1}.$$

Задания для домашней работы

1 Найти интервалы выпуклости и точки перегиба функций:

a)
$$f(x) = x^5 - 10x^2 + 3x$$
;

e)
$$f(x) = \sqrt[3]{x+3}$$
;

$$6) f(x) = x + \sin x;$$

ж)
$$f(x) = e^{\frac{1}{x}}$$
;

$$f(x) = \arctan \frac{1}{x};$$

и)
$$f(x) = x^4 - 6x^2 + 5x$$
;

$$f(x) = 4x^2 + \frac{1}{x}$$

д)
$$f(x) = 2x^2 + \ln x$$
;

$$\pi$$
) $f(x) = \sin x + \cos x$.

2 Найти асимптоты графиков функций:

a)
$$y = x + \frac{\sin x}{x}$$
;

$$\Gamma) \ \ y = \sqrt[3]{x^3 - 6x^2} \ ;$$

$$6) y = \frac{1}{2}x + \arctan x;$$

д)
$$y = -x \operatorname{arctg} x$$
;

$$\mathbf{B}) y = \sqrt{x} \ln x;$$

e)
$$y = \frac{x^3}{x^2 - 1}$$
.

3 Исследовать функции:

a)
$$f(x) = x^3 + 3x^2 + 1$$
;

д)
$$f(x) = (x+2)^2(x-1)^2$$
;

6)
$$f(x) = x^4 + 4x^2 + 3$$
;

e)
$$f(x) = x^3 - 3x^2 + 4$$
;

B)
$$f(x) = \frac{1}{x^2 - 3x + 2}$$
; $x = x^3$

ж)
$$f(x) = \frac{x^3}{x-1}$$
;

r)
$$f(x) = \frac{x}{x^2 - 2x + 2}$$
;

$$\text{ M) } f(x) = \frac{x^2 + 1}{x^2 - 1}.$$

Практическое занятие 8 Построение графиков функций

- 8.1 Исследование функций, заданных параметрическими уравнениями
 - 8.2 Исследование функций, заданных неявно
 - 8.3 Исследование функций, заданных в полярных координатах

8.1 Исследование функций, заданных параметрическими уравнениями

Параметрические уравнения плоской кривой имеют вид

$$x = x(t), y = y(t), t \in T$$
. (8.1)

Исследование и построение такой кривой можно провести по следующей схеме:

- 1) найти множество T общую часть областей определения функций x(t), y(t) (если множество T не задано). При этом необходимо отметить те значения параметра t_i (включая $t_i = \pm \infty$), для которых хотя бы один из односторонних $\lim_{t \to t_i \pm 0} x(t)$, $\lim_{t \to t_i \pm 0} y(t)$ равен $+\infty$ или $-\infty$;
- 2) установить, обладает ли кривая симметрией, позволяющей сократить выкладки;
- 3) найти нули функций x(t), y(t) и области знакопостоянства этих функций;
- 4) найти точки t_k , в которых хотя бы одна из производных $\dot{x}(t),\ \dot{y}(t)$ равна нулю или разрывна. Заметим, что точки t_i отмеченные в п. 1) и точки t_k , найденные в этом пункте, разбивают множество T на промежутки знакопостоянства производных $\dot{x}(t),\ \dot{y}(t)$. Поэтому на каждом таком промежутке $\left(t_p;t_{p+1}\right)$ функция x(t) строго монотонна. Следовательно, система уравнений (8.1) на интервале $\left(t_p;t_{p+1}\right)$ задает параметрически функцию вида y=f(x). Производные этой функции выражаются по формулам

$$y_x = \frac{\dot{y}(t)}{\dot{x}(t)}, \ y_{xx} = \frac{\frac{d}{dt}(y_x)}{\dot{x}(t)}.$$

Часть кривой, соответствующую изменению параметра t от t_p до t_{p+1} называется *ветвью кривой*. Каждая ветвь кривой является графиком функции вида y = f(x);

- 5) найти точки t_{j} , в которых $y_{xx}^{(i)} = 0$;
- 6) результаты исследования занести в таблицу, аналогичную таблице 8.1.

 ${\it Таблица}~8.1$ — Результаты исследования графика функции, заданной

параметрическими уравнениями

$(t_p;t_{p+1})$						
$(x_p; x_{p+1})$						
$(y_p; y_{p+1})$						
Знак y'_{xx}		•••				

Здесь в первой строке записываются промежутки изменения параметра t, граничными точками которых t_p и t_{p+1} служат точки, найденные в п. 1), 4) и 5). Во второй и третьей строках таблицы приводятся соответствующие промежутки изменения переменных x и y. В последней строке таблицы указывается знак $y_{xx}^{''}$, определяющий направление выпуклости графика соответствующей ветви кривой;

7) пользуясь таблицей, построить ветви кривой, соответствующие промежуткам $(t_p;t_{p+1})$.

 $3\,a\,m\,e\,v\,a\,n\,u\,s$. I В п. 1) схемы можно найти асимптоты кривой (если они имеются). Для этого надо иметь в виду следующее:

- а) если при $t \to t_p$ $(t \to t_p + 0$ или $t \to t_p 0)$ $x \to x_0$, а $y \to \infty$, то $x = x_0$ вертикальная асимптота кривой;
- б) если при $t \to t_p$ $(t \to t_p + 0$ или $t \to t_p 0)$ $x \to \infty$, а $y \to y_0$, то $y = y_0$ горизонтальная асимптота кривой;

- в) если при $t \to t_p$ $(t \to t_p + 0$ или $t \to t_p 0)$ $x \to \infty$ и $y \to \infty$, то возможна наклонная асимптота, нахождение которой надо провести в соответствии с теоремой 4 практического занятия 7.
- 2 Вместо всей области определения T рассматривается только ее неотрицательная часть в следующих случаях:
- $\forall t \in T \ x(-t) = x(t), \ y(-t) = -y(t)$ (симметрия относительно оси Ox);
- $\forall t \in T \quad x(-t) = -x(t), \ y(-t) = y(t)$ (симметрия относительно оси Oy);
- $\forall t \in T \quad x(-t) = -x(t), \quad y(-t) = -y(t)$ (симметрия относительно начала координат);
 - ∀ t ∈ T x(-t) = x(t), y(-t) = y(t) (наложение).
- 3 Если t_p точка, найденная в п. 4) схемы, и если на интервале $(t_p;t_{p+1})$ производная $\dot{x}(t)$ сохраняет знак, то на этом интервале система уравнений (8.1) задает параметрически функцию вида y=f(x), для которой точка $x(t_p)$ является точкой возможного экстремума. Является ли $x(t_p)$ точкой экстремума функции y=f(x), можно определить, рассмотрев изменение y на интервалах $(t_{p-1};t_p)$ и $(t_p;t_{p+1})$.

8.2 Исследование функций, заданных неявно

Если функцию, заданную неявно уравнением

$$F(x;y) = 0 \tag{8.2}$$

возможно разрешить относительно одной из переменных, то исследование этой функции проводится обычным образом.

Иногда удается получить параметрические уравнения функции. Для этого положим $y = \alpha(t)x^n$, где $\alpha(t)$ и n — выбранные подходящим образом функция и число.

Подставляя выражение для y в уравнение (8.2), получим

$$F(x;\alpha(t)x^n)=0$$
.

Пусть $x = \varphi(t)$ – решение этого уравнения. Тогда

$$x = \varphi(t), \ y = \alpha(t)\varphi^n(t) = \psi(t)$$

есть параметрические уравнения кривой.

На практике выбор функции $\alpha(t)$ определяется видом функции F(x;y).

8.3 Исследование функций, заданных в полярных координатах

Пусть в полярной системе координат $(\varphi; r)$ кривая задана уравнением $r = r(\varphi)$.

В полярных координатах прямая, задаваемая уравнением

$$r = \frac{d}{\sin(\varphi - \varphi_0)}, \ d \neq 0,$$

является асимптотой графика функции $r(\phi)$, если выполнены следующие условия:

$$\lim_{\varphi \to \varphi_0} r(\varphi) = +\infty ,$$

$$\lim_{\varphi \to \varphi_0} r(\varphi) \sin(\varphi - \varphi_0) = d , d \neq 0.$$

Тогда, выражая декартовы координаты через полярные:

$$\begin{cases} x = r \cos \varphi, \\ y = r \sin \varphi, \end{cases}$$

получим параметрические уравнения кривой (ϕ – параметр):

$$x = r(\varphi)\cos\varphi,$$

$$y = r(\varphi)\sin\varphi.$$

Вопросы для самоконтроля

- 1 Как вычисляются производные функции, заданной параметрическими уравнениями?
- 2 Как найти асимптоты графика функции, заданной параметрическими уравнениями?
- 3 Как исследовать и использовать симметрию функции, заданной параметрическими уравнениями?

- 4 Сформулируйте необходимое условие локального экстремума функции, заданной параметрическими уравнениями.
- 5 Приведите схему исследования функции, заданной параметрическими уравнениями.
 - 6 Как исследовать функцию, заданную неявно?
- 7 Как исследовать функцию, заданную в полярных координатах?

Решение типовых примеров

1 Исследовать функцию $y = \arcsin \frac{2x}{1+x^2}$ и построить ее график.

$$\left|\frac{2x}{1+x^2}\right| \le 1.$$

Данное неравенство равносильно неравенству $(1-\left|x\right|^2) \ge 0$, которое верно для любых вещественных x .

Итак, $D(f) = \mathbf{R}$.

Функция $\frac{2x}{1+x^2}$ непрерывна в любой точке (как частное двух

непрерывных функций). Поэтому функция $y = \arcsin \frac{2x}{1+x^2}$ так-

же непрерывна в любой точке (как суперпозиция непрерывных функций).

Функция непериодическая.

Поскольку

$$y(-x) = \arcsin \frac{2(-x)}{1+(-x)^2} = -\arcsin \frac{2x}{1+x^2} = y(x),$$

то функция является нечетной. Поэтому вместо всей области определения достаточно рассмотреть полупрямую $[0;+\infty)$.

При x=0 имеем y=0. Других нулей функция не имеет. На полупрямой $(0;+\infty)$ функция является положительной;

2) асимптоты графика функции. В силу непрерывности функции $y = \arcsin\frac{2x}{1+x^2}$ на ${\bf R}$, график функции не имеет вертикальных асимптот. Для нахождения наклонной асимптоты при $x \to +\infty$ вычислим следующие пределы:

$$k = \lim_{x \to +\infty} = \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{1}{x} \arcsin \frac{2x}{1+x^2} = 0,$$

$$b = \lim_{x \to +\infty} (f(x) - kx) = \lim_{x \to +\infty} \arcsin \frac{2x}{1+x^2} = \arcsin 0 = 0.$$

Отсюда следует, что прямая y=0 является горизонтальной асимптотой при $x \to +\infty$.

Аналогично устанавливается, что прямая y = 0 – горизонтальной асимптотой при $x \to -\infty$;

3) точки возможного экстремума и интервалы монотонности функции.

Найдем точки возможного экстремума на полупрямой $[0;+\infty)$. Вычислим производную функции при $x \neq 1$:

$$y' = \left(\arcsin\frac{2x}{1+x^2}\right)' = \frac{1}{\sqrt{1-\frac{4x^2}{\left(1+x^2\right)^2}}} \cdot \frac{2\left(1+x^2\right)-4x^2}{\left(1+x^2\right)^2} = \frac{1+x^2}{\left|1-x^2\right|} \cdot \frac{2\left(1-x^2\right)}{\left(1+x^2\right)^2} = \frac{2\operatorname{sgn}\left(1-x^2\right)}{1+x^2}.$$

Отсюда видно, что производная не обращается в нуль ни в одной точке. Так как y'(1+0)=-1, y'(1-0)=1, то точка x=1 является точкой излома. Значит, имеем только одну точку возможного экстремума x=1.

Промежутки монотонности функции определяются знаком производной: y' > 0 при $x \in [0;1), y' < 0$ при $x \in (1;+\infty)$.

Знак производной при переходе через точку x=1 меняется с плюса на минус. Поэтому в точке x=1 функция имеет локальный максимум, причем $y(1)=\arcsin 1=\frac{\pi}{2}$.

Отметим, что в точке x=1 функция непрерывна, а ее производная имеет разрыв 1-го рода. Значит, точка графика $\left(1;\frac{\pi}{2}\right)$ является угловой точкой;

4) промежутки выпуклости и вогнутости, точки перегиба. Вторая производная при $x \neq 1$ имеет вид

$$y'' = \frac{-4x \operatorname{sgn}(1-x^2)}{(1+x^2)^2}.$$

Направление выпуклости определяется знаком второй производной:

- -y'' < 0 при $x \in [0;1)$, значит график функции на этом промежутке выпуклый,
- -y" > 0 при $x \in (1;+\infty)$, значит график функции на этом промежутке вогнут.

Так как вторая производная обращается в нуль лишь при x = 0 и при переходе через точку x = 0 меняет знак, то в точке (0;0) график функций имеет перегиб.

Результаты исследования функции заносим в таблицу 8.2.

Tаблица 8.2 – Результаты исследования функции $y = \arcsin \frac{2x}{1+x^2}$

x	0	(0;1)	1	(1;∞)
y'	2	+	Не сущ.	_
<i>y</i> "	0	_	Не сущ.	+
y	0		$\frac{\pi}{2}$	_
	Точка		max	
	перег.		Угл.точ.	

Исходя из результатов, содержащихся в таблице 8.2, строим график данной функции на полупрямой $[0;\infty)$.

Используя нечетность функции, достраиваем ее график на всей области определения (рисунок 8.1).

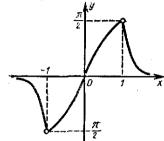


Рисунок 8.1 – График функции $y = \arcsin \frac{2x}{1+x^2}$

2 Исследовать функцию, заданную параметрическими уравнениями, и построить график

$$x = \frac{t}{1 - t^2}, \ y = \frac{t(1 - 2t^2)}{1 - t^2}.$$
 (8.3)

 $P \, e \, u \, e \, h \, u \, e$. 1) функции x(t), y(t) определены на множестве $T = (-\infty; -1) \cup (-1; 1) \cup (1; +\infty)$.

Поскольку

$$\lim_{t \to \infty} x(t) = 0, \lim_{t \to \infty} y(t) = -\infty,$$

$$\lim_{t \to +\infty} x(t) = 0, \lim_{t \to \infty} y(t) = -\infty,$$

то x = 0 — вертикальная асимптота кривой.

Найдем односторонние пределы в точках t = -1 и t = 1:

$$\lim_{t \to -1-0} x(t) = +\infty, \quad \lim_{t \to -1+0} x(t) = -\infty,$$

$$\lim_{t \to -1-0} y(t) = -\infty, \quad \lim_{t \to -1+0} y(t) = +\infty,$$

$$\lim_{t \to 1-0} x(t) = +\infty, \quad \lim_{t \to 1+0} x(t) = -\infty,$$

$$\lim_{t \to 1-0} y(t) = -\infty, \quad \lim_{t \to 1+0} y(t) = +\infty.$$

Отсюда следует, что при $t \to -1$ и $t \to 1$ возможны наклонные асимптоты.

Так как при $t \rightarrow 1$

$$\lim_{x \to \pm \infty} \frac{y}{x} = \lim_{t \to 1 \pm 0} (1 - 2t^2) = -1, \quad \lim_{x \to \pm \infty} (y + x) = \lim_{t \to 1 \pm 0} \frac{1 + t - 2t^2}{1 - t^2} = \frac{3}{2},$$

то прямая $y = -x + \frac{3}{2}$ — наклонная асимптота.

Так как при $t \rightarrow -1$

$$\lim_{x \to \pm \infty} \frac{y}{x} = \lim_{t \to -1 \pm 0} (1 - 2t^2) = -1, \quad \lim_{x \to \pm \infty} (y + x) = \lim_{t \to -1 \pm 0} \frac{1 + t - 2t^2}{1 - t^2} = -\frac{3}{2},$$

то прямая $y = -x - \frac{3}{2}$ — наклонная асимптота.

Итак,

$$x \in (0; +\infty) \cup (-\infty; +\infty) \cup (-\infty; 0),$$

$$y \in (-\infty; -\infty) \cup (+\infty; -\infty) \cup (+\infty; +\infty);$$

2) так как

$$x(-t) = \frac{-t}{1-(-t)^2} = -x(t),$$
 $y(-t) = \frac{-t(1-2(-t)^2)}{1-(-t)^2} = -y(t),$

то график функции симметричен относительно начала координат O(0;0). Поэтому рассмотрим график функции только на множестве $T_1 = [0;1) \cup (1;+\infty)$;

- 3) на множестве $T_1 = [0;1) \cup (1;+\infty)$ имеем x = 0 при t = 0, y = 0 при t = 0 и $t = \frac{1}{\sqrt{2}}$;
 - 4) найдем производные функций x(t), y(t):

$$\dot{x}(t) = \frac{1+t^2}{(1-t^2)^2}, \qquad \dot{y}(t) = \frac{2t^4-5t^2+1}{(1-t^2)^2}.$$

На множестве $T_1 = [0;1) \cup (1;+\infty)$ $\dot{x} = 0$ и $\dot{y} = 0$ при

$$t_1 = \frac{1}{2}\sqrt{5 - \sqrt{17}} \approx 0,47$$
 и $t_2 = \frac{1}{2}\sqrt{5 + \sqrt{17}} \approx 1,51$.

Тогда $x_1 = 0.6$, $y_1 = 0.3$ и $x_2 = -0.7$, $y_2 = 2.3$, т. е. имеем точки возможного экстремума $M_1(0.6;0.3)$ и $M_2(-0.7;2.3)$;

5) найдем производные $y_{x}^{'}$ и $y_{xx}^{''}$:

$$y'_{x} = \frac{\dot{y}}{\dot{x}} = \frac{2t^{4} - 5t^{2} + 1}{1 + t^{2}}, \qquad y''_{xx} = \frac{\frac{d}{dt}(y'_{x})}{\dot{x}(t)} = \frac{-4t(1 - t^{2})^{3}(3 + t^{2})}{(1 + t^{2})^{3}}.$$

Отсюда $y''_{rr} \le 0$ при $t \in [0;1), y''_{rr} \ge 0$ при $t \in (1;+\infty)$;

6) составим таблицу результатов исследования (таблица 8.3):

Таблица 8.3 – Результаты исследования функции

$\left(t_{p};t_{p+1}\right)$	(0;0,47)	0,47	(0,47;1)	(1;1,51)	1,51	(1,51;+∞)
$(x_p; x_{p+1})$	(0;0,6)	0,6	(0,6;+∞)	(-∞;-0,7)	-0,7	(-0,7;0)
$(y_p; y_{p+1})$	(0;0,3)	0,3	(0,3;-∞)	(+∞;2,3)	2,3	(2,3;+∞)
Знак <i>у</i> _{хх}	+	+	+	_	_	_

7) строим часть кривой, соответствующую множеству $T_1 = [0;1) \cup (1;+\infty)$. Далее, используя симметрию кривой, построим всю кривую (рисунок 8.2).

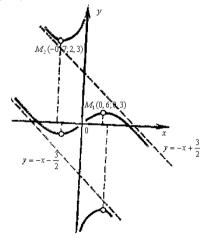


Рисунок 8.2 – График функции (8.3)

3 Исследовать функцию заданную параметрическими уравнениями и построить график

$$x = 2t - t^2$$
, $y = 3t - t^3$. (8.4)

Pemenue. 1) функции x(t), y(t) определены на \mathbf{R} .

При этом

$$\lim_{t \to -\infty} x(t) = -\infty , \lim_{t \to -\infty} y(t) = +\infty , \qquad \lim_{t \to +\infty} x(t) = -\infty , \lim_{t \to \infty} y(t) = -\infty .$$

Таким образом, возможны наклонные асимптоты.

Так как

$$\lim_{x \to -\infty} \frac{y}{x} = \lim_{t \to \pm \infty} \frac{3t - t^3}{2t - t^2} = \infty,$$

то наклонных асимптот нет;

- 2) свойствами симметрии и периодичности функция не обладает;
- 3) имеем x = 0 при t = 0 и t = 2; y = 0 при t = 0, $t = -\sqrt{3}$ и $t = \sqrt{3}$;
 - 4) найдем производные функций x(t), y(t):

$$\dot{x}(t) = 2(1-t),$$
 $\dot{y}(t) = 3(1-t^2).$

Имеем $\dot{x}=0$ при t=1, $\dot{y}=0$ при t=1 и t=-1. Тогда точки возможного экстремума W(1;2), N(-3;-2);

5) найдем производные $y_{x}^{'}$ и $y_{xx}^{''}$:

$$y'_{x} = \frac{\dot{y}}{\dot{x}} = \frac{3(1-t^{2})}{2(1-t)} = \frac{3(1+t)}{2}, \ y''_{xx} = \frac{3}{4(1-t)}, \ t \neq 1.$$

Отсюда $y_{xx}^{"} > 0$ при $t \in (-\infty;1)$, $y_{xx}^{"} < 0$ при $t \in (1;+\infty)$;

6) составим таблицу результатов исследования (таблица 8.4);

Таблица 8.4 – Результаты исследования функции (8.4)

тиолици 6.4—т сзультаты исследования функции (6.4)							
$\left(t_{p};t_{p+1}\right)$	(-∞;-1)	-1	(-1;1)	1	(1;+∞)		
$\left(x_{p};x_{p+1}\right)$	(-∞;-3)	-3	(-3;1)	1	(1;+∞)		
$(y_p; y_{p+1})$	(+∞;-2)	-2	(-2;2)	2	(2;-∞)		
Знак $y_{xx}^{"}$	+	+	+		-		

7) строим график функции. Первая производная $y_x^{'}$ не определена в точке t=1, поэтому точка W(1;2) является угловой точкой графика.

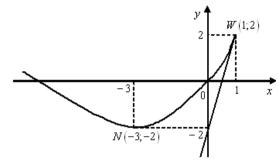


Рисунок 8.3 – График функции $x = 2t - t^2$, $y = 3t - t^3$

4 Исследовать функцию, заданную неявно и построить ее график

$$x^2 = y^2 + x^4 \tag{8.5}$$

 $Pewehue. \ \ \frac{1 \ \ \, {
m cnocof.}}{1 \ \ \, {
m cnocof.}}$ Разрешая данное уравнение относительно y , получим $y=\pm x\sqrt{1-x^2}$.

Функции $y_1=x\sqrt{1-x^2}$ и $y_2=-x\sqrt{1-x^2}$ симметричны относительно оси 0x, то исследование можно провести для функции y_1 . Эта функция определена на отрезке [-1;1], т. е. $D(y_1)=[-1;1]$. Функция y_1 равна нулю при x=-1, x=1, x=0. На области определения $D(y_1)$ функция является нечетной.

Находим производные функции y_1 :

$$y_1' = \frac{1 - 2x^2}{\sqrt{1 - x^2}},$$
 $y_1'' = \frac{x(2x^2 - 3)}{\sqrt{(1 - x^2)^3}}.$

Точками возможного экстремума являются точки:

$$x_1 = -\frac{1}{\sqrt{2}}, \ x_2 = \frac{1}{\sqrt{2}}, \ x_3 = -1, \ x_4 = 1.$$

Точки x_3 и x_4 являются граничными точками области определения $D(y_1)$. Определим характер точек x_1 и x_2 с помощью второй производной:

$$y_{1}''\left(-\frac{1}{\sqrt{2}}\right) = \frac{\left(-\frac{1}{\sqrt{2}}\right)\left(2\left(-\frac{1}{\sqrt{2}}\right)^{2} - 3\right)}{\sqrt{\left(1 - \left(-\frac{1}{\sqrt{2}}\right)^{2}\right)^{3}}} = 4 > 0,$$

$$y_{1}''\left(\frac{1}{\sqrt{2}}\right) = \frac{\frac{1}{\sqrt{2}}\left(2\left(\frac{1}{\sqrt{2}}\right)^{2} - 3\right)}{\sqrt{\left(1 - \left(\frac{1}{\sqrt{2}}\right)^{2}\right)^{3}}} = -4 < 0.$$

Следовательно, $x_1 = -\frac{1}{\sqrt{2}}$ является точкой минимума,

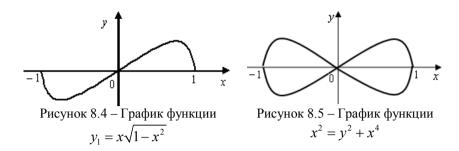
 $x_2 = \frac{1}{\sqrt{2}}$ — точкой максимума. Значения функции y_1 в этих точках соответственно равны:

$$y_{1}\left(-\frac{1}{\sqrt{2}}\right) = -\frac{1}{\sqrt{2}}\sqrt{1 - \left(-\frac{1}{\sqrt{2}}\right)^{2}} = -\frac{1}{2},$$
$$y_{1}\left(\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}\sqrt{1 - \left(\frac{1}{\sqrt{2}}\right)^{2}} = \frac{1}{2}.$$

В точке x=0 вторая производная обращается в нуль. При $x\in (-1;0)$ имеем $y_1^{"}<0$, при $x\in (0;1)$ имеем $y_1^{"}>0$. Следовательно, точка O(0,0) является точкой перегиба графика функции $y_1=x\sqrt{1-x^2}$.

График функции $y_1 = x\sqrt{1-x^2}$ изображен на рисунке 8.4. Отображая построенный график симметрично относительно оси 0x, получим график исходной функции $y = \pm x\sqrt{1-x^2}$ (рису-

нок 8.5). Видно, в точке O(0,0) график пересекает себя, поэтому является точкой самопересечения.



 $\frac{2 \; \mathrm{способ}}{\mathrm{сnocoo}}$. Полагая $y=x^2 \; \mathrm{sh} \, t$ из уравнения $x^2=y^2+x^4$, получим $x^2=\frac{1}{\mathrm{ch}^2 \, t}$. Отсюда $x=\pm\frac{1}{\mathrm{ch} \, t}$. Поскольку y(-x)=y(x), то график функции симметричен относительно оси 0y, и поэтому будем рассматривать случай x>0.

Тогда параметрические уравнения кривой имеют вид:

$$x(t) = \frac{1}{\operatorname{ch} t}, \qquad y(t) = \frac{\operatorname{sh} t}{\operatorname{ch}^2 t}. \tag{8.6}$$

Исследование данной функции проводится по схеме для функций, заданных параметрическими уравнениями.

1) функции x(t), y(t) определены на \mathbf{R} .

При этом

$$\lim_{t \to -\infty} x(t) = 0, \lim_{t \to -\infty} y(t) = 0, \qquad \lim_{t \to +\infty} x(t) = 0, \lim_{t \to \infty} y(t) = 0.$$

Таким образом, наклонные асимптоты отсутствуют;

2) так как

$$x(-t) = x(t), y(-t) = -y(t),$$

то график функции симметричен относительно оси 0x.

Свойством периодичности функция не обладает;

- 3) имеем x = 1, y = 0 при t = 0;
- 4) найдем производные функций x(t), y(t):

$$\dot{x}(t) = -\frac{\sinh t}{\cosh^2 t}, \qquad \dot{y}(t) = \frac{1 - \sinh^2 t}{\cosh^3 t}.$$

Имеем $\dot{x}=0$ при t=0, $\dot{y}=0$ в точках $t_1=-{\rm arsh}\,1$ и $t_2={\rm arsh}\,1$;

5) найдем производные y_{x} и y_{xx} :

$$y_{x}' = \frac{\dot{y}}{\dot{x}} = \frac{\sinh^2 t - 1}{\sinh t \cdot \cosh t}, \qquad y_{xx}'' = -\frac{\sinh^2 t \left(\sinh^2 t + \cosh^2 t\right) + 1}{\sinh^3 t}.$$

Так как y_{yy} (-arsh1) > 0, то t_{min} = -arsh1. Тогда

$$x_{\min} = \frac{1}{\sqrt{2}}, \ y_{\min} = -\frac{1}{2}.$$

Так как y_{xx} (arsh 1) < 0 , то $t_{\max} = \operatorname{arsh} 1$. Тогда

$$x_{\text{max}} = \frac{1}{\sqrt{2}}, \ y_{\text{max}} = \frac{1}{2};$$

6) строим график функции, заданной уравнениями (8.6). Отображая симметрично относительно оси 0y, получаем график исходной функции (рисунок 8.7).

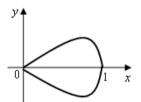


Рисунок 8.6 – График функции

$$x(t) = \frac{1}{\operatorname{ch} t}, \ y(t) = \frac{\operatorname{sh} t}{\operatorname{ch}^2 t},$$

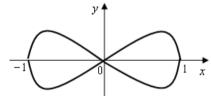


Рисунок 8.7 – График функции

$$x^2 = y^2 + x^4$$

5 Исследовать и построить график функции

$$r(\varphi) = \frac{3\sin\varphi\cos\varphi}{\cos^3\varphi + \sin^3\varphi}.$$
 (8.7)

 $P\,e\,w\,e\,h\,u\,e$. Данная функция при тех значениях ϕ , для которых, как следует из определения полярного радиуса, выполнено неравенство

$$\frac{3\sin\varphi\cos\varphi}{\cos^3\varphi+\sin^3\varphi}\geq 0.$$

Кроме того, функция $r(\varphi)$ является 2π периодической, то достаточно рассмотреть промежуток

$$\left[-\frac{\pi}{2}; -\frac{\pi}{4}\right] \cup \left[0; \frac{\pi}{2}\right] \cup \left(\frac{3\pi}{4}; \pi\right].$$

Поскольку

$$\lim_{\varphi \to -\frac{\pi}{4} - 0} \frac{3\sin\varphi\cos\varphi}{\cos^3\varphi + \sin^3\varphi} = +\infty ,$$

$$\lim_{\varphi \to -\frac{\pi}{4} - 0} \frac{3\sin\varphi\cos\varphi}{\cos^3\varphi + \sin^3\varphi} \sin(\varphi + \frac{\pi}{4}) = -\frac{1}{\sqrt{2}},$$

то прямая

$$r = -\frac{1}{\sqrt{2}\sin\left(\varphi + \frac{\pi}{4}\right)}$$

является асимптотой при $\phi \to -\frac{\pi}{4} - 0$.

Аналогично

$$\lim_{\varphi \to \frac{3\pi}{4} + 0} \frac{3\sin\varphi\cos\varphi}{\cos^3\varphi + \sin^3\varphi} = +\infty ,$$

$$\lim_{\varphi \to \frac{3\pi}{4} + 0} \frac{3\sin\varphi\cos\varphi}{\cos^3\varphi + \sin^3\varphi} \sin(\varphi - \frac{3\pi}{4}) = \frac{1}{\sqrt{2}},$$

и прямая

$$r = \frac{1}{\sqrt{2}\sin\left(\varphi - \frac{3\pi}{4}\right)}$$

является асимптотой при $\phi \to \frac{3\pi}{4} + 0$.

Так как $\sin\left(\varphi - \frac{3\pi}{4}\right) = -\sin\left(\varphi + \frac{\pi}{4}\right)$, то это одна и та же прямая.

Если $\cos \varphi = 0$, то из уравнения (8.7) следует r = 0, т. е. имеем точку x = y = 0.

При $\cos \varphi \neq 0$, полагая $t = \operatorname{tg} \varphi$, получим параметрическое задание кривой:

$$x = \frac{3t}{t^3 + 1}, \ y = \frac{3t^2}{t^3 + 1}.$$
 (8.8)

Найдем производные

$$\dot{x} = \frac{3(1-2t^3)}{(t^3+1)^2}, \qquad \dot{y} = \frac{3t(2-t^3)}{(t^3+1)^2}.$$

Имеем $\dot{x} = 0$ при $t = \frac{1}{\sqrt[3]{2}}$, $\dot{y} = 0$ при t = 0 и $t = \sqrt[3]{2}$.

Найдем производные f' и f'':

$$y_x' = \frac{t(2-t^3)}{1-2t^3},$$
 $y_{xx}'' = \frac{2(1+t^3)^4}{3(1-2t^3)^3}.$

При $t \in (-\infty; -1)$ имеем $y_x' < 0$ и $y_{xx}" > 0$, значит функция убывает и вогнута, следовательно, подходит к асимптоте сверху.

При $t \in (-1,0)$ имеем $y_x' < 0$ и $y_{xx}'' > 0$, значит, функция убывает и вогнута. При этом

$$x_{\min} = y_{\min} = 0$$

При $t \in \left(0; \frac{1}{\sqrt[3]{2}}\right)$ имеем $y_x' > 0$ и $y_{xx}'' > 0$, значит, функция

возрастает и вогнута. При этом

$$x\left(\frac{1}{\sqrt[3]{2}}\right) = \sqrt[3]{4}, \quad y\left(\frac{1}{\sqrt[3]{2}}\right) = \sqrt[3]{2}.$$

При $t \in \left(\frac{1}{\sqrt[3]{2}}; \sqrt[3]{2}\right)$ имеем $y_x' < 0$ и $y_{xx}'' < 0$, значит, функция

возрастает и выпукла. При этом

$$x_{\text{max}} = x(\sqrt[3]{2}) = \sqrt[3]{2}$$
, $y_{\text{max}} = y(\sqrt[3]{2}) = \sqrt[3]{4}$.

При $t \in (\sqrt[3]{2}; +\infty)$ имеем $y_x' > 0$ и $y_{yx}'' < 0$, значит, функция возрастает и выпукла.

Так как $\lim_{t\to +\infty} \frac{y}{\dot{x}} = +\infty$, то O(0;0) является точкой возврата.

График функции (8.7) называется декартов лист и изображен на рисунке 8.8. В декартовой системе координат декартов лист задается уравнением:

$$x^3 + y^3 = 3xy.$$

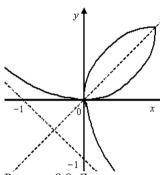


Рисунок 8.8. Декартов лист

Задания для аудиторной работы

1 Исследовать функции и построить их графики:

a)
$$f(x) = x + \sqrt{x^2 - 1}$$
;

a)
$$f(x) = x + \sqrt{x^2 - 1}$$
; $g(x) = \sqrt{x^2 + 1} - 2\sqrt{x + 1}$;

6)
$$f(x) = \sqrt{2x^3 + 9x^2}$$
; e) $f(x) = \frac{\sqrt{4x^2 - 1}}{x}$;

$$e) f(x) = \frac{\sqrt{4x^2 - 1}}{x}$$

$$B) f(x) = e^x - x;$$

в)
$$f(x) = e^x - x$$
;
 $f(x) = (x-2)e^{-\frac{1}{x}}$;
 $f(x) = \ln x - x + 1$;
 $f(x) = \sin x - \sin^2 x$.

$$f(x) = \ln x - x + 1$$
;

и)
$$f(x) = \sin x - \sin^2 x$$

2 Исследовать следующие функции, заданные параметрическими уравнениями, и построить график:

a)
$$x = \frac{1}{4}(t+1)^2$$
, $y = \frac{1}{4}(t-1)^2$; b) $x = \frac{t^2}{t-1}$, $y = \frac{t}{t^2-1}$.

6)
$$x = \frac{t^2}{1-t^2}$$
, $y = \frac{1}{1+t^2}$; $y = -5t^2 + 2t^5$, $y = -3t^2 + 2t^3$;

3 Исследовать следующие функции, заданные неявно, и построить график:

а)
$$xy^2 - y^2 - 4x = 0$$
; б) $x^6 + 2x^3y = y^3$ (положить $y = x^2t$).

4 Исследовать следующие функции, заданные в полярных координатах и построить график:

Задания для домашней работы

1 Исследовать функции и построить их графики:

$$f(x) = \frac{\ln x}{x};$$

$$y(x) = \frac{\ln x}{2} = \cos x - \frac{1}{2} \cos 2x.$$

2 Исследовать следующие функции, заданные параметрическими уравнениями, и построить график:

a)
$$x = \frac{t^2}{t^2 + 1}$$
, $y = \frac{t^3}{t^2 + 1}$;
 B) $x = \frac{t^2}{t^2 + 1}$, $y = \frac{t^2(1 - t^2)}{t^2 + 1}$;

6)
$$x = 4t^2$$
, $y = 3t(t^2 + 1)$; $r) x = \frac{t^2 + 1}{4(1 - t)}$, $y = \frac{t}{t + 1}$.

3 Исследовать следующие функции, заданные неявно, и построить график:

а)
$$x^3 + y^3 = 3x^2$$
; б) $4y^2 = 4x^2y + x^5$ (положить $y = x^2t$).

4 Исследовать следующие функции, заданные в полярных координатах и построить график: