Литература

Основная

- 1 Демидович, В. П. Сборник задач и упражнений по математическому анализу: учебное пособие для вузов / В. П. Демидович. М.: Наука, 1977.
- 2 Кудрявцев, Л. Д. Краткий курс математического анализа : учебник для вузов / Л. Д. Кудрявцев.— М. : Наука, Гл. ред. физ.-мат. лит., 1989.
- 3 Кудрявцев, Л. Д. Сборник задач по математическому анализу: учебное пособие для вузов: в 3 ч. Ч. 3. Функции нескольких переменных/ Л. Д. Кудрявцев, [и др.]. Санкт-Петербург, 1994.
- 4 Математический анализ в вопросах и задачах. Функции нескольких переменных : учебное пособие для вузов / под ред. В. Ф. Бутузова. М. : Высш. шк., 1988.
- 5 Тер-Крикоров, А. М. Курс математического анализа: учебное пособие для вузов / А. М. Тер-Крикоров, М. И. Шабунин М. : Наука Γ л. ред. физ.-мат. Лит., 1988.

Дополнительная

- 1 Богданов, Ю. С. Лекции по математическому анализу: учебное пособие для вузов. В 2-х ч. / Ю. С. Богданов. Мн., 1974.
- 2 Богданов, Ю. С. Математический анализ: учебное пособие для вузов / Ю. С. Богданов, О. А. Кастрица, Ю. Б. Сыроид. М., 2003.
- 3 Ильин, В. А. Математический анализ: учебное пособие для вузов: в 2 ч. / В. А. Ильин, В. А. Садовничий, Бл. Х. Сендов. М., 1985.
- 4 Никольский, С. М. Курс математического анализа: учебник для вузов: в 2 т. Т. 2. / С. М. Никольский. М.: Наука, 1983.
- 5 Виноградова, И. А. Математический анализ в задачах и упражнениях / И. А. Виноградова, [и др.]. М. : Из-во Московскго университета, 1991.

Тестовые задания для рубежного контроля

Тест 1 Предел и непрерывность функции многих переменныхВариант 1

- 1 Расстояние между точками в пространстве \square " определяется равенством:
 - 2 Окрестностью точки (1;1) является множество:
 - a) $(1;2)\times(1;1)$; б) $[0;2]\times[0;2]$; в) $(0;2)\times(0;2)$.
- 3 Всякая ли непрерывная функция на [a;b] является ограниченной на нем?
 - 4 Является ли непрерывной в точке (0;0) функция

$$f(x,y) = \begin{cases} \frac{x^2 y}{x^2 + y^2} & \text{при } x^2 + y^2 \neq 0, \\ 0 & \text{при } x^2 + y^2 = 0? \end{cases}$$

- ти определения? _______. 6 Предел последовательности $\left(\frac{\sin n}{n}; \frac{n}{2^n}; \frac{(-1)^n}{n}\right)$ в пространстве
- \Box 3 pasen:
 - a) (1;1;0), (0;0;0), (0;0;0)
 - 7 Предел $\lim_{\substack{x\to\infty\\y\to\infty}} \frac{x+y}{x^2-xy+y^2}$ равен:
 - a) $0, 6) \infty, B) 1.$
 - 8 Повторный предел $\lim_{x\to 0}\lim_{y\to 0}\frac{\sin 2x}{\pi x+y^2}$ равен:
 - a) 1, 6) π , B) $\frac{2}{\pi}$.
 - 9 Областью определения функции $f(x;y) = \frac{1}{\sin xy}$ является:
 - a) $\Box^2 \setminus \{(0,0)\}$, 6) $\Box^2 \setminus \{(x,y) \mid x = \pi n, y = \pi n, n \in \Box \}$,
 - B) \Box $^{2} \setminus \{(x, y) \mid xy = \pi n, n \in \Box \}$.

10 Является ли функция $f(x; y) = \sin xy$ равномерно непрерывной на отрезке [0.1]? _______.

Вариант 2

1 Длина вектора в пространстве \Box ⁿ определяется равенством:

- 2 Окрестностью точки (-1;1) является множество:
- a) $(-1;2)\times(-1;1)$; б) $[-2;0]\times[-2;0]$; в) $(-2;0)\times(-2;0)$.
- 3 Всякая ли ограниченная функция является непрерывной?
- 4 Является ли непрерывной в точке (0;0) функция

$$f(x,y) = \begin{cases} \sqrt{1-x^2-y^2} & \text{при } x^2+y^2 < 1, \\ 0 & \text{при } x^2+y^2 \ge 1? \end{cases}$$

- 5 Является ли ограниченной функция $f(x; y) = \arccos xy$ в области определения? _______.
 - 6 Предел последовательности $\left(\frac{\left(-1\right)^{n}-n}{n^{2}},\frac{n}{3^{n}},\frac{\left(-1\right)^{n}}{n}\right)$ в про-

странстве \square ³ равен:

- a) (0;0;0), (0;1;0), (0;0;0).
- 7 Предел $\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{x^2 + y^2}{x^4 x^3 y + y^2}$ равен:
- a) ∞ , 6) 0, B) 1.
- 8 Повторный предел $\lim_{x\to 0} \lim_{y\to 0} \frac{\sin \pi x}{2x+y^2}$ равен:
- a) 1, 6) $\frac{\pi}{2}$, B) $\frac{2}{\pi}$.
- 9 Областью определения функции $f(x;y) = \frac{1}{\sin(x+y)}$ являет-

ся:

a)
$$\Box$$
 $^{2} \setminus \{(0,0)\}$, δ) \Box $^{2} \setminus \{(x,y) \mid x+y=\frac{\pi}{2}n, n \in \Box\}$,

B)
$$\Box$$
 $^{2} \setminus \{(x, y) \mid x + y = \pi n, n \in \Box \}$.

Шаг 1 Преподаватель предлагает студентам самостоятельно изучить тему «Интеграл Фурье», подробно разобрать доказательства свойств интеграла Фурье, воспользовавшись литературой, приведенной в списке литературы данного пособия.

Шаг 2 По просьбе педагога студенты случайным образом разбиваются на 2 группы. Студенты садятся друг напротив друга, образуя 2 круга — внешний и внутренний. Таким образом у каждого студента есть партнер для общения.

Шаг 3 Преподаватель формулирует одно из свойств интеграла Фурье, предлагает студентам в течение нескольких минут доказать его друг другу.

Шаг 4 Студенты внешнего круга перемещаются на один стул по ходу часовой стрелки и образуют новые пары, в которых снова проводится доказательство того же свойства.

Шаг 5 Студенты внутреннего круга перемечаются на один стул против часовой стрелки. Вновь образуются новые пары. Итак далее несколько раз.

Шаг 6 Предлагается для доказательства следующее свойство интеграла Фурье с последующим выполнение шагов 3, 4, 5.

Шаг 7 После рассмотрения всех свойств интеграла Фурье, преподаватель делит студентов на несколько групп, предлагает каждой группе сформулировать и записать доказательство отдельных свойств (заранее выбранных преподавателем), проводит оценивание записанных доказательств.

ные решения с готовыми ответами и выставляют друг другу оценки.

Шаг 3 Из имеющихся заданий каждая пара составляет новое задание из 5 задач и обменивается ими с другой случайным образом выбранной парой. Сверяя полученные решения с правильными ответами, каждая пара оценивает соответствующую ей пару.

Шаг 4 Завершив работу по парам, студенты объединяются в «четверки», чтобы выработать новое задание и продолжить процесс дальше.

Шаг 5 На данном этапе «четверки» объединяются в «восьмерки» (всего три группы). Преподаватель предлагает каждой группе по одной новой задаче. В результате обсуждения студенты должны выработать решение. Затем педагог предоставляет слово каждой группе с целью презентации полученного результата.

Примечание:

- преподавателю необходимо четко определить количество времени для проведения каждого этапа;
 - желательно контролировать каждый этап;
- задания не должны быть сложными, чтобы студенты могли в течении отведенного времени их решить;
- работу можно остановить на этапе «четверок», если процесс решения задач занимает много времени;
- в результате игры каждый студент получает оценку, состоящую из баллов, полученных за составленное задание, за работу в паре, четверке, восьмерке.

Тема 2 Интеграл Фурье

Основные положения и формулы, решения типовых примеров, задания к практическим занятиям по интегралу Фурье излагаются в данном пособии в соответствующих разделах.

В рамках СУРС предполагается проведение деловой игры «Карусель».

Деловая игра «Карусель»

Цель:

- сочетать работу в парах;

- усвоить теоретический материал.

Количество участников: до 30 человек.

Время проведения: 45 минут

Проведение:

Тест 2 Дифференцирование функции многих переменных Вариант 1

1 Условие дифференцируемости функции $f(x_1;x_2;...;x_n)$ в точке $\left(x_1^0;x_2^0;...;x_n^0\right)$ имеет вид ______.

2 Всякая ли дифференцируемая функция в точке непрерывна этой точке?

3 Частные производные $\frac{\partial f}{\partial u}$ и $\frac{\partial f}{\partial v}$ функции f(x;y), где x = x(u;v), y = y(u;v), находятся по формулам:

4 Функция Лагранжа для существования условного экстремума функции f(x; y) удовлетворяет условиям:

a)
$$\frac{\partial L}{\partial x} = 0$$
, $\frac{\partial L}{\partial y} = 0$, $\frac{\partial L}{\partial \lambda} = 1$;

6)
$$\frac{\partial L}{\partial x} = 0$$
, $\frac{\partial L}{\partial y} = 0$, $\frac{\partial L}{\partial \lambda} = 0$;

B)
$$\frac{\partial L}{\partial x} = 1$$
, $\frac{\partial L}{\partial y} = 1$, $\frac{\partial L}{\partial \lambda} = 1$.

5 Частные производные 1-го порядка функции $f(x;y) = x^y$ равны:

a)
$$\frac{\partial f}{\partial x} = y \cdot x^{y-1}$$
, $\frac{\partial f}{\partial y} = x^y \ln x$;

6)
$$\frac{\partial f}{\partial x} = x^{y} \ln y$$
, $\frac{\partial f}{\partial y} = y x^{y-1}$;

B)
$$\frac{\partial f}{\partial x} = y \cdot x^{y-1}$$
, $\frac{\partial f}{\partial y} = x^y$.

6 Дифференциал 1-го порядка функции $f(x; y) = \operatorname{arcctg} \frac{y}{x}$ равен:

a)
$$df = \frac{ydy - xdx}{x^2 + y^2}$$
; 6) $df = \frac{ydy + xdx}{x^2 + y^2}$; B) $df = \frac{ydy - xdx}{x^2 - y^2}$.

7 Дифференциал 2-го порядка функции $f(x;y) = x^2 y^3$ равен

8 Уравнение касательной плоскости к графику функции $x^2 + y^2 - z^2 = 0$ в точке A(3;4;5) имеет вид:

a)
$$-3x + 4y - 5z = 0$$
; 6) $3x + 4y - 5z = 0$; B) $3x + 4y + 5z = 0$.

9 Минимальное значение функции $f(x; y) = x^2 + xy + y^2 - 13x - 11y + 7$ равно ______.

10 Значение выражения $(1,02)^3(0,97)^2$ приближенно равно

Вариант 2

1 По определению частная производная $\frac{\partial f}{\partial x_k}$ функции $f\left(x_1;x_2;...;x_n\right)$ в точке $\left(x_1^0;x_2^0;...;x_n^0\right)$ равна

2 Всякая ли непрерывная функция в точке дифференцируема этой точке?

3 Частные производные $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$ неявной функции F(x;y;z)=0 находятся по формулам:

4 Формула Тейлора для функция f(x; y) имеет вид:

a)
$$f(x,y) = f(x_0,y_0) + df(x_0,y_0) + \frac{1}{2!}d^2f(x_0,y_0) + \dots + \frac{1}{n!}d^nf(x_0,y_0) + \frac{1}{(n+1)!}d^{n+1}f(\xi,\eta)$$
;

$$6) f(x,y) = f(x_0,y_0) + df(x_0,y_0) + \frac{1}{2!}d^2f(x_0,y_0) + \dots + \frac{1}{n!}d^nf(x_0,y_0) + \frac{1}{(n+1)!}d^{n+1}f(x,y) ;$$

B)
$$f(x,y) = f(x_0,y_0) + df(x_0,y_0) + \frac{1}{2!}d^2f(x_0,y_0) + ... + \frac{1}{n!}d^nf(x_0,y_0) + \frac{1}{n!}d^nf(\xi,\eta)$$
.

5 Частные производные 1-го порядка функции $f(x; y) = \sin xy$ равны:

a)
$$\frac{\partial f}{\partial x} = -y \cdot \sin xy$$
, $\frac{\partial f}{\partial y} = -x \sin xy$;

6)
$$\frac{\partial f}{\partial x} = x \cdot \cos xy$$
, $\frac{\partial f}{\partial y} = x \cos xy$;

B)
$$\frac{\partial f}{\partial x} = y \cdot \cos xy$$
, $\frac{\partial f}{\partial y} = x \cos xy$.

$$\rho = (x+2y)/(x^2+y^2)$$
.

4.21 D:
$$x = 2, y = 0, y^2 = 2x(y \ge 0), \rho = 7x^2/4 + y$$
.

4.22
$$D: x^2 + y^2 = 1, x^2 + y^2 = 9, x = 0, y = 0 (x \ge 0, y \le 0),$$

$$\rho = (2x - y)/(x^2 + y^2).$$

4.23 *D*:
$$x = 2, y = 0, y^2 = x/2(y \ge 0), \rho = 7x^2/2 + 8y$$
.

4.24
$$D: x^2 + y^2 = 1, x^2 + y^2 = 25, x = 0, y = 0 (x \ge 0, y \le 0),$$

 $\rho = (x - 4y)/(x^2 + y^2).$

4.25 *D*:
$$x = 1$$
, $y = 0$, $y^2 = 4x(y \ge 0)$, $\rho = 6x + 3y^2$.

4.26
$$D: x^2 + y^2 = 4, x^2 + y^2 = 16, x = 0, y = 0 (x \ge 0, y \le 0),$$

 $\rho = (3x - y)/(x^2 + y^2).$

4.27 *D*:
$$x = 2$$
, $y = 0$, $y^2 = x/2$, $\rho = 4x + 6y^2$.

4.28
$$D: x^2 + y^2 = 4, x^2 + y^2 = 9, x = 0, y = 0 (x \le 0, y \ge 0),$$

$$\rho = (y - 4x)/(x^2 + y^2).$$

4.29 *D*:
$$x = 1/2$$
, $y = 0$, $y^2 = 2x(y \ge 0)$, $\rho = 4x + 9y^2$.

4.30
$$D: x^2 + y^2 = 4, x^2 + y^2 = 9, x = 0, y = 0 (x \le 0, y \ge 0),$$

$$\rho = -2x/(x^2 + y^2).$$

Деловая игра $«1 \times 2 \times 4 \times 8$ » по теме «Приложения двойных интегралов»

Пель:

- совместить индивидуальную и групповую работу;
- развить умение принимать групповое решение;
- выработать навыки использования двойных интегралов при решении геометрических и физических задач.

Количество участников: до 24 человек.

Проведение:

Шаг 1 Преподаватель заранее предлагает студентам подобрать и решить по 5 задач.

Шаг 2 По просьбе педагога студенты случайным образом разбиваются на 2 группы, в рамках каждой группы рассчитываются на первый-двенадцатый и объединяются в пары: «первый» номер из 1-ой группы с «первым» из 2-ой группы, «второй» номер из 1-ой группы со «вторым» из 2-ой группы и так далее. Студенты в парах обмениваются заданиями и решают. Затем они сверяют получен-

- **4.1** *D*: x = 1, y = 0, $y^2 = 4x$ ($y \ge 0$), $\rho = 7x^2 + y$.
- **4.2** $D: x^2 + y^2 = 1, x^2 + y^2 = 4, x = 0, y = 0, x \ge 0, y \ge 0,$ $\rho = (x + y)/(x^2 + y^2).$
- **4.3** $D: x=1, y=0, y^2=4x(y \ge 0), \rho=7x^2/2+5y$.
- **4.4** $D: x^2 + y^2 = 9, x^2 + y^2 = 16, x = 0, y = 0 (x \ge 0, y \ge 0),$ $\rho = (2x + 5y)/(x^2 + y^2).$
- **4.5** $D: x = 2, y = 0, y^2 = 2x(y \ge 0), \rho = 7x^2/8 + 2y$.
- **4.6** $D: x^2 + y^2 = 1, x^2 + y^2 = 16, x = 0, y = 0, (x \ge 0, y \ge 0),$ $\rho = (x + y)/(x^2 + y^2).$
- **4.7** $D: x = 2, y = 0, y^2 = x/2(y \ge 0), \rho = 7x^2/2 + 6y$.
- **4.8** $D: x^2 + y^2 = 4, x^2 + y^2 = 25, x = 0, y = 0, (x \ge 0, y \le 0),$ $\rho = (2x - 3y)/(x^2 + y^2).$
- **4.9** *D*: x = 1, y = 0, $y^2 = 4x(y \ge 0)$, $\rho = x + 3y$.
- **4.10** $D: x^2 + y^2 = 1, x^2 + y^2 = 9, x = 0, y = 0 (x \ge 0, y \le 0),$ $\rho = (x - y)/(x^2 + y^2).$
- **4.11** *D*: x = 1, y = 0, $y^2 = x(y \ge 0)$, $\rho = 3x + 6y^2$.
- **4.12** $D: x^2 + y^2 = 9, x^2 + y^2 = 25, x = 0, y = 0 (x \le 0, y \ge 0),$ $\rho = (2y - x)/(x^2 + y^2).$
- **4.13** $D: x=2, y=0, y^2=x/2, (y \ge 0), \rho=2x+3y^2$.
- **4.14** $D: x^2 + y^2 = 4, x^2 + y^2 = 16, x = 0, y = 0 (x \le 0, y \ge 0),$ $\rho = (2y - 3x)/(x^2 + y^2).$
- **4.15** $D: x=1/2, y=0, y^2=8x(y \ge 0), \rho=7x+3y^2$.
- **4.16** $D: x^2 + y^2 = 9, x^2 + y^2 = 16, x = 0, y = 0 (x \le 0, y \ge 0),$ $\rho = (2y - 5x)/(x^2 + y^2).$
- **4.17** *D*: x = 1, y = 0, $y^2 = 4x$, $\rho = 7x^2 + 2y$.
- **4.18** $D: x^2 + y^2 = 1, x^2 + y^2 = 16, x = 0, y = 0 (x \le 0, y \ge 0),$ $\rho = (x + 3y)/(x^2 + y^2).$
- **4.19** $D: x=2, y^2=2x, y=0 (y \ge 0), \rho=7x^2/4+y/2.$
- **4.20** D: $x^2 + y^2 = 1$, $x^2 + y^2 = 4$, x = 0, y = 0 ($x \ge 0$, $y \ge 0$),

- 6 Дифференциал 1-го порядка функции $f(x; y) = \arctan \frac{x}{y}$ равен:
- a) $df = \frac{ydx xdy}{x^2 + y^2}$; 6) $df = \frac{ydy + xdx}{x^2 + y^2}$; B) $df = \frac{ydy xdx}{x^2 y^2}$.
- 7 Дифференциал 2-го порядка функции $f(x;y) = x^3y^2$ равен
- 8 Уравнение касательной плоскости к графику функции $2x^2 + 3y^2 + 4z^2 = 9$ в точке A(1;-1;1) имеет вид:
 - a) 2x-3y+4z+9=0; 6) 2x-3y+4z-9=0; B) 2x-3y+4z=0.
- 9 Минимальное значение функции $f(x; y) = x^2 + y^2 2x + 4y + 1$ равно ______.
 - 10 Значение выражения $(1,02)^{3,01}$ приближенно равно

Тест 3 Криволинейные интегралы

Вариант 1

1 По определению криволинейный интеграл 2-го рода равен:

a)
$$\int_{AB} P(x,y)dx + Q(x,y)dy = \lim_{\lambda \to \infty} \sum_{k=1}^{n} P(\xi_k, \eta_k) \Delta x_k + Q(\xi_k, \eta_k) \Delta y_k,$$

6)
$$\int_{AB} P(x,y) dx + Q(x,y) dy = \lim_{\lambda \to 0} \sum_{k=1}^{\infty} P(\xi_k, \eta_k) \Delta x_k + Q(\xi_k, \eta_k) \Delta y_k ,$$

$$\mathrm{B)} \int\limits_{\mathbb{R}^{B}} P\big(x,y\big) dx + Q\big(x,y\big) dy = \lim_{\lambda \to 0} \sum_{k=1}^{n} P\big(\xi_{k},\eta_{k}\big) \Delta x_{k} + Q\big(\xi_{k},\eta_{k}\big) \Delta y_{k} \ .$$

2 Укажите верное равенство:

a)
$$\int_{AB} f(x; y) dl = \int_{\alpha}^{\beta} f(r(\varphi)\cos\varphi; r(\varphi)\sin\varphi) \cdot \sqrt{r(\varphi) + r'^{2}(\varphi)} d\varphi,$$

6)
$$\int_{AB} f(x;y) dl = \int_{\alpha}^{\beta} f(r(\varphi)\cos\varphi; r(\varphi)\sin\varphi) \cdot \sqrt{r^2(\varphi) + r'^2(\varphi)} d\varphi,$$

B)
$$\int_{AB} f(x,y) dl = \int_{\alpha}^{\beta} f(r(\varphi)\cos\varphi; r(\varphi)\sin\varphi) \cdot \sqrt{1 + r^{2}(\varphi)} d\varphi.$$

3 Если кривая AB лежит в плоскости, перпендикулярной оси Ox , то $\int\limits_{AB} P(x;y) dx$ равен ______.

4 Интеграл $\int_{AB} y^2 dl$, где $AB = \left\{ (x,y) \mid x = 2\cos t, y = 2\sin t, 0 \le t \le \frac{\pi}{2} \right\}$

равен:

a) $2\,\pi$, б) π , в) $3\,\pi$.

5 Интеграл $\int_{AB} ydl$, где $AB = \{(x,y) \mid y^2 = 2x, 0 \le x \le 2\}$, равен:

a)
$$\frac{1}{3}(5\sqrt{5}+1)$$
, 6) $\frac{1}{3}(5\sqrt{5}-1)$, B) $\frac{1}{2}(5\sqrt{2}-1)$.

6 Интеграл
$$\int_{AB} (x^2 + y) dx + xy dy$$
, где $AB = \{(x, y) \mid y = x, 0 \le x \le 1\}$

равен:

a)
$$\frac{7}{6}$$
, 6) $\frac{7}{5}$, B) $\frac{7}{3}$.

7 Интеграл $\int_{AB} x dx + xy dy$, где $AB = \{(x,y) \mid x^2 + y^2 = 1, x \ge 0, y \ge 0\}$

равен:

a) 1, 6)
$$-\frac{1}{6}$$
, B) $\frac{1}{6}$.

8 Длина дуги $AB = \left\{ \left(x, y, z \right) \mid x = t, y = \frac{\sqrt{2}}{2} t^2, z = \frac{1}{3} t^3, 0 \le t \le 1 \right\}$ равна

9 Работа, произведенная силой $\vec{F} = 4x^6\vec{i} + xy\vec{j}$ вдоль дуги $AB = \left\{ \left(x, y \right) \mid y = x^3, \, 0 \le x \le 1 \right\}$ равна _______.

10 Масса материальной дуги кривой $y = x^2 + 1$ между точками A(0;1) и B(1;2), если линейная плотность в каждой точке дуги прямо пропорциональна абсциссе этой точки, равна ______.

Вариант 2

1 По определению криволинейный интеграл 1-го рода равен:

a)
$$\int_{AB} f(x,y) dl = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_k, \eta_k) \Delta l_k,$$

6)
$$\int_{l_{n}} f(x, y) dl = \lim_{n \to \infty} \sum_{k=1}^{n} f(\xi_{k}, \eta_{k}) \Delta l_{k},$$

B)
$$\int_{AB} f(x,y) dl = \lim_{\lambda \to 0} \sum_{k=1}^{\infty} f(\xi_k, \eta_k) \Delta l_k.$$

2 Укажите верное равенство:

3.5
$$x^2 + y^2 + z^2 = 4$$
, $z = 0$, $z = 1$.

3.6
$$z = 1 - x^2 - y^2$$
, $z = 0$.

3.7
$$x^2 + y^2 = 16$$
, $x^2 + z^2 = 16$.

3.8
$$x^2 + y^2 + z^2 = 9$$
, $z = 1$, $z = 2$.

3.9
$$z = 2 - x^2 - y^2$$
, $z = 0$.

3.10
$$x^2 + y^2 = 1$$
, $x^2 + z^2 = 1$.

3.11
$$x^2 + y^2 + z^2 = 16$$
, $z = -2$, $z = 2$.

3.12
$$z = 1 - 4x^2 - y^2$$
, $z = 0$.

3.13
$$x^2 + y^2 + z^2 = 9$$
, $z = -1$, $z = 2$.

3.14
$$z = 3 - x^2 - y^2$$
, $z = 0$.

3.15
$$x^2 + y^2 = 25$$
, $x^2 + z^2 = 25$.

3.16
$$x^2 + y^2 + z^2 = 4$$
, $x = -1$, $x = 0$.

3.17
$$z = 1 - x^2 - 9v^2$$
, $z = 0$.

3.18
$$x^2 + y^2 = 4$$
, $y^2 + z^2 = 4$.

3.19
$$x^2 + y^2 + z^2 = 4$$
, $y = 0$, $y = 1$.

3.20
$$z = 1 - 9x^2 - y^2$$
, $z = 0$.

3.21
$$x^2 + y^2 = 9$$
, $y^2 + z^2 = 9$.

3.22
$$z = 1 - 16x^2 - v^2$$
, $z = 0$.

3.23
$$x^2 + y^2 = 16$$
, $y^2 + z^2 = 16$.

3.24
$$x^2 + y^2 + z^2 = 9$$
, $z = -2$, $z = 0$.

3.25
$$z = 1 - x^2 - 16y^2$$
, $z = 0$.

3.26
$$x^2 + y^2 = 1$$
, $y^2 + z^2 = 1$.

3.27
$$x^2 + y^2 + z^2 = 9$$
, $y = 0$, $y = 2$.

3.28
$$z = 4 - x^2 - y^2$$
, $z = 0$.

3.29
$$x^2 + v^2 = 25$$
, $v^2 + z^2 = 25$

3.30
$$x^2 + y^2 + z^2 = 16$$
, $z = 0$, $z = 1$.

4 Найти массу, статические моменты, координаты центра тяжести, моменты инерции пластинки D, ограниченной кривыми с поверхностной плотностью ρ :

2.19 части сферы $x^2 + y^2 + z^2 = 25$, заключенной внутри конуса $y^2 + z^2 = x^2$.

2.20 части сферы $x^2 + y^2 + z^2 = 4$, заключенной внутри цилиндра $x^2 + z^2 = 2z$.

2.21 части конуса $x = \sqrt{y^2 + z^2}$, заключенной внутри цилиндра $y^2 + z^2 = 1$.

2.22 части сферы $x^2 + y^2 + z^2 = 4$, заключенной внутри конуса $x^2 + z^2 = y^2$.

2.23 части сферы $x^2 + y^2 + z^2 = 25$, заключенной внутри цилиндра $x^2 + z^2 = 5z$.

2.24 части конуса $y = \sqrt{x^2 + z^2}$, заключенной внутри цилиндра $x^2 + z^2 = 4$.

2.25 части сферы $x^2 + y^2 + z^2 = 4$, заключенной внутри конуса $x^2 + y^2 = z^2$.

2.26 части сферы $x^2 + y^2 + z^2 = 9$, заключенной внутри цилиндра $x^2 + y^2 = 3x$.

2.27 части конуса $2z = \sqrt{x^2 + y^2}$, заключенной внутри цилиндра $x^2 + y^2 = 4$.

2.28 части сферы $x^2 + y^2 + z^2 = 36$, заключенной внутри конуса $y^2 + z^2 = x^2$.

2.29 части сферы $x^2 + y^2 + z^2 = 1$, заключенной внутри цилиндра $x^2 + z^2 = z$.

2.30 части конуса $3z = \sqrt{x^2 + y^2}$, заключенной внутри цилиндра $x^2 + y^2 = 9$.

3 Найти объем тела, ограниченного поверхностями:

3.1
$$x^2 + y^2 = 4$$
, $x^2 + z^2 = 4$.

3.2
$$x^2 + y^2 + z^2 = 4$$
, $z = -1$, $z = 1$.

3.3
$$z = 1 - x^2 - 4y^2$$
, $z = 0$.

3.4
$$x^2 + y^2 = 9$$
, $x^2 + z^2 = 9$.

a)
$$\int_{a}^{b} f(x; y) dl = \int_{a}^{b} f(x; y(x)) \cdot \sqrt{y^{2}(x) + y^{2}(x)} dx$$
,

6)
$$\int_{AB} f(x;y) dl = \int_{a}^{b} f(x;y(x)) \cdot \sqrt{1 + y'(x)} dx,$$

B)
$$\int_{AB} f(x,y) dl = \int_{a}^{b} f(x,y(x)) \cdot \sqrt{1 + y'^{2}(x)} dx$$
.

3 Изменяется ли знак криволинейного интеграла 2-го рода при изменении направления пути интегрирования?

4 Интеграл $\int_{AB} xy^2 dl$, где $AB = \left\{ (x,y) \mid x = 3\cos t, y = 3\sin t, 0 \le t \le \frac{\pi}{2} \right\}$ равен:

a)
$$\frac{27}{4}$$
, 6) 27, B) 28.

5 Интеграл $\int_{AB} \sqrt{1+x^2} \, dl$, где $AB = \left\{ \left(x,y \right) \mid 2y-x^2 = 0, \, 0 \le x \le 3 \right\}$, равен:

a)
$$\frac{32}{5}$$
, 6) $\frac{32}{3}$, B) 32.

6 Интеграл $\int_{AB} x^3 dx + x^2 dy$, где $AB = \{(x,y) \mid y = x^2, 1 \le x \le 3\}$ равен:

а) 50, б) 60, в) 55.

7 Интеграл $\int_{AB} y^2 dx + x^2 dy$ по дуге AB, где

 $AB = \{(x, y) \mid x = t - \sin t, y - 1 - \cos t, 0 \le t \le 2\pi\}$ pabeh:

a)
$$\pi(5-2\pi)$$
, 6) $\pi(5+2\pi)$, B) $5-2\pi$.

8 Длина дуги $AB = \left\{ \left(x,y,z \right) \mid x = \cos^3 t, y = \sin^3 t, z = \cos 2t, \ 0 \le t \le 2\pi \right\}$ равна .

9 Работа, произведенная силой $\vec{F} = \left(x^2 + y\right)\vec{i} + \left(x + y^2\right)\vec{j}$ вдоль дуги $AB = \left\{ \left(x,y\right) \mid y = x, -1 \le x \le 0 \right\}$ равна ______.

10 Масса материальной дуги кривой $3y = x^3$ между точками A(0;0) и $B\left(1;\frac{1}{3}\right)$, если линейная плотность в каждой точке дуги прямо пропорциональна кубу абсциссы этой точки, равна

Тест 4 Двойной интеграл

Вариант 1

1 Укажите верную формулу

a)
$$\iint_G f(x,y) dxdy = \int_a^b dx \int_{y_1(x)}^{y_2(x)} f(x,y) dy;$$

6)
$$\iint_G f(x,y) dx dy = \int_a^b dy \int_{y_1(x)}^{y_2(x)} f(x,y) dx;$$

B)
$$\iint_G f(x,y) dx dy = \int_a^b f(x,y) dx \int_{y_1(x)}^{y_2(x)} dy.$$

2 Полярные координаты имеют вид:

a)
$$x = r \cos \varphi$$
, $y = r \sin \varphi$, $-\infty < r < +\infty$, $0 \le \varphi \le 2\pi$;

6)
$$x = r \cos \varphi$$
, $y = r \sin \varphi$, $0 \le r < +\infty$, $0 \le \varphi \le 2\pi$;

B)
$$x = r \sin \varphi$$
, $y = r \cos \varphi$, $0 \le r < +\infty$, $0 \le \varphi \le 2\pi$.

3 Укажите верное равенство

a)
$$\int_{-2}^{2} dx \int_{4}^{x^{2}} f(x, y) dy = \int_{0}^{4} dy \int_{\sqrt{y}}^{y} f(x, y) dx$$
;

b)
$$\int_{-2}^{2} dx \int_{x^{2}}^{4} f(x, y) dy = \int_{0}^{4} dy \int_{-\sqrt{y}}^{\sqrt{y}} f(x.y) dx$$
;

c)
$$\int_{-2}^{2} dx \int_{4}^{x^{2}} f(x, y) dy = \int_{0}^{4} dy \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y) dx$$

4 Изменить порядок интегрирования в повторном интеграле

$$\int_{1}^{6} dx \int_{6/x}^{7-x} f(x,y) dy:$$

a)
$$\int_{1}^{6} dy \int_{6/y}^{7-y} f(x,y) dx$$
; 6) $\int_{y/6}^{7-x} dy \int_{1}^{6} f(x,y) dx$; B) $\int_{6/y}^{7-x} dy \int_{1}^{6} f(x,y) dx$.

5 Двойной интеграл $\iint_{D} \frac{x}{y^2} dx dy$ по прямоугольнику

 $D = \{(x, y) \mid 1 \le x \le 2, 4 \le y \le 6\}$ pasen:

а) 0,125; б) 0,115; в) 0,135.

- **2.5** части конуса $z = \sqrt{x^2 + y^2}$, заключенной внутри цилиндра $x^2 + y^2 = 2$.
- **2.6** части сферы $x^2 + y^2 + z^2 = 4$, заключенной внутри конуса $x^2 + y^2 = z^2$.
- **2.7** части сферы $x^2 + y^2 + z^2 = 16$, заключенной внутри цилиндра $x^2 + y^2 = 4y$.
- **2.8** части конуса $z = \sqrt{x^2 + y^2}$, заключенной внутри цилиндра $x^2 + y^2 = 4$.
- **2.9** части сферы $x^2 + y^2 + z^2 = 25$, заключенной внутри конуса $x^2 + y^2 = z^2$.
- **2.10** части конуса $x = \sqrt{y^2 + z^2}$, заключенной внутри цилиндра $y^2 + z^2 = 1$.
- **2.11** части сферы $x^2 + y^2 + z^2 = 1$, заключенной внутри цилиндра $x^2 + y^2 = y$.
- **2.12** части конуса $y = \sqrt{x^2 + z^2}$, заключенной внутри цилиндра $x^2 + z^2 = 4$.
- **2.13** части сферы $x^2 + y^2 + z^2 = 16$, заключенной внутри конуса $x^2 + z^2 = y^2$.
- **2.14** части сферы $x^2 + y^2 + z^2 = 4$, заключенной внутри цилиндра $x^2 + y^2 = 2x$.
- **2.15** части конуса $y = \sqrt{x^2 + z^2}$, заключенной внутри цилиндра $x^2 + z^2 = 9$.
- **2.16** части сферы $x^2 + y^2 + z^2 = 1$, заключенной внутри конуса $x^2 + y^2 = z^2$.
- **2.17** части сферы $x^2 + y^2 + z^2 = 16$, заключенной внутри цилиндра $x^2 + y^2 = 4x$.
- **2.18** части конуса $z = \sqrt{x^2 + y^2}$, заключенной внутри цилиндра $x^2 + y^2 = 16$.

6)
$$x^2 - 2x + y^2 = 0$$
, $x^2 - 4x + y^2 = 0$, $y = 0$, $y = 4x$.

1.23 a)
$$x = 27 - v^2, x = -6v$$
;

6)
$$x^2 - 4x + y^2 = 0, x^2 - 8x + y^2 = 0, y = 0, y = 2x$$
.

1.24 a)
$$\sqrt{72-y^2}$$
, $6x = y^2$, $y = 0$ ($y \ge 0$);

6)
$$y^2 - 6y + x^2 = 0$$
, $y^2 - 8y + x^2 = 0$, $y = x, x = 0$.

1.25 a)
$$y = \sqrt{6 - x^2}$$
, $y = \sqrt{6} - \sqrt{6 - x^2}$;

6)
$$y^2 - 4y + x^2 = 0$$
, $y^2 - 8y + x^2 = 0$, $y = x, x = 0$.

1.26 a)
$$y = \frac{3}{2}\sqrt{x}, y = \frac{3}{2x}, x = 4$$
;

6)
$$x^2 - 4x + y^2 = 0$$
, $x^2 - 8x + y^2 = 0$, $y = x/2$, $y = 2x$.

1.27 a)
$$y = \sin x, y = \cos x, x = 0 (x \le 0)$$
;

6)
$$y^2 - 4y + x^2 = 0$$
, $y^2 - 8y + x^2 = 0$, $y = 3x$, $x = 0$.

1.28 a)
$$y = \frac{1}{x}, y = 6e^x, y = 1, y = 6$$
;

6)
$$x^2 - 4x + y^2 = 0, x^2 - 6x + y^2 = 0, y = x/4, y = 4x.$$

1.29 a)
$$y = 3\sqrt{x}, y = 3/x, x = 9$$
;

6)
$$y^2 - 2y + x^2 = 0$$
, $y^2 - 10y + x^2 = 0$, $y = x/2$, $x = 0$.

1.30 a)
$$y = 11 - x^2, y = -10x$$
;

6)
$$x^2 - 6x + y^2 = 0$$
, $x^2 - 10x + y^2 = 0$, $y = x/3$, $y = 3x$.

2 Найти площади:

2.1 части сферы $x^2 + y^2 + z^2 = 4$, заключенной внутри цилиндра $x^2 + y^2 = 2y$.

2.2 части сферы $x^2 + y^2 + z^2 = 9$, заключенной внутри конуса $x^2 + y^2 = z^2$.

2.3 части конуса $z = \sqrt{x^2 + y^2}$, заключенной внутри цилиндра $x^2 + y^2 = 1$.

2.4 части сферы $x^2 + y^2 + z^2 = 9$, заключенной внутри цилинпра $x^2 + y^2 = 3y$. 6 Двойной интеграл $\iint_G (x+2y) dx dy$ по области G , ограниченной прямыми $y=4x+6,\ y=\frac{1}{2}x-1,\ x=-1$ равен:

a)
$$-4\frac{1}{10}$$
; б) $-4\frac{1}{12}$; в) $-4\frac{1}{14}$.

7 Двойной интеграл $\iint_{x^2+y^2 \le 4} \sqrt{x^2+y^2} \, dx dy$ равен:

a)
$$12\pi$$
; б) 6π ; в) $\frac{16\pi}{3}$.

8 Объем тела, ограниченного поверхностями x + 2y - z = 0, x - 2y - 2 = 0, x = -1, x = 3, z = 0 равен: _______.

9 Масса плоской пластинки ограниченной линиями $x^2 + y^2 = 4$,

$$x^2 + y^2 = 16$$
 ($x \ge 0$, $y \ge 0$) с плотностью $\rho(x, y) = \frac{x}{\sqrt{x^2 + y^2}}$ равна:

10 Площадь фигуры, ограниченная линиями
$$(x^2 + y^2)^2 = 8(x^2 - y^2)$$
, $x^2 + y^2 = 4$ равна .

Вариант 2

1 Укажите верную формулу

a)
$$\iint_G f(x,y) dxdy = \iint_{G^*} f(x(u,v),y(u,v)) J dudv;$$

6)
$$\iint_{\Omega} f(x,y) dxdy = \iint_{\Omega} f(x(u,v),y(u,v)) |J| dudv;$$

B)
$$\iint_G f(x,y) dxdy = \iint_{G^*} f(x(u,v),y(u,v)) |J| dudv.$$

2 Якобиан перехода от декартовых координат к полярным равен:

a)
$$J = r^2$$
; 6) $J = r$; B) $J = r \sin \varphi$.

3 Укажите верное равенство

a)
$$\int_{-1}^{1} dx \int_{x^{3/2}}^{2-x^2} f(x,y) dy = \int_{0}^{1} dy \int_{-y^{2/3}}^{y^{2/3}} f(x,y) dx + \int_{1}^{2} dy \int_{-\sqrt{2-y}}^{\sqrt{2-y}} f(x,y) dx ;$$

b)
$$\int_{0}^{1} dx \int_{x^{3/2}}^{2-x^{2}} f(x,y) dy = \int_{0}^{1} dy \int_{-y^{2/3}}^{y^{2/3}} f(x,y) dx + \int_{1}^{2} dy \int_{-\sqrt{2-y}}^{\sqrt{2-y}} f(x,y) dx;$$

c)
$$\int_{-1}^{1} dx \int_{x^{2/3}}^{2-x^2} f(x,y) dy = \int_{0}^{1} dy \int_{-v^{2/3}}^{v^{2/3}} f(x,y) dx + \int_{1}^{2} dy \int_{-\sqrt{2-y}}^{\sqrt{2-y}} f(x,y) dx.$$

4 Изменить порядок интегрирования в повторном интеграле $\int\limits_{0}^{c}dx\int\limits_{0}^{\ln x}f(x,y)dy:$

a)
$$\int_{0}^{1} dy \int_{e}^{e^{y}} f(x, y) dx$$
; 6) $\int_{0}^{\ln x} dy \int_{e}^{e^{y}} f(x, y) dx$; B) $\int_{0}^{1} dy \int_{e^{y}}^{e} f(x, y) dx$.

5 Двойной интеграл $\iint\limits_D x \ y^2 \ dx dy$ по прямоугольнику

 $D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 1\}$ pabeh:

- а) 1,5; б) 0,5; в) 1/3.
- 6 Двойной интеграл $\iint\limits_{D}(x^2+y^2)dxdy$ по области G , ограничен-

ной прямыми y = x, y = 0, y = 1, y = 2 равен:

- а) 5; б) 7; в) 3.
- 7 Двойной интеграл $\iint_{y^2+y^2<16} \frac{dxdy}{\sqrt{25-x^2-y^2}}$ равен:
- a) 2π ; 6) 4π ; B) π .
- 8 Объем тела, ограниченного поверхностями $x^2 + y^2 = 8$, x = 0, y = 0, z = 0, x + y + z = 4 равен:
- 9 Масса плоской пластинки ограниченной линиями x+y=1, x+y=2, 2x-y=0, 4x-y=0 с плотностью $\rho(x,y)=(x+y)^2$ равна:
- 10 Площадь фигуры, ограниченной линией $(x^2 + y^2)^2 = 3(x^3 3xy^2)$ равна ______.

Тест 5 Тройной интеграл

Вариант 1

1 Укажите верную формулу

a)
$$\iiint_{Q} f(x, y, z) dx dy dz = \int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} dy \int_{z_{1}(x, y)}^{z_{2}(x, y)} f(x, y, z) dz;$$

1.9 a)
$$y = \sqrt{12 - x^2}$$
, $y = 2\sqrt{3} - \sqrt{12 - x^2}$, $x = 0 (x \ge 0)$;

6)
$$y^2 - 6y + x^2 = 0$$
, $y^2 - 10y + x^2 = 0$, $y = x$, $x = 0$.

1.10 a)
$$y = \frac{3}{2}\sqrt{x}, y = \frac{3}{2x}, x = 9$$
;

6)
$$x^2 - 2x + y^2 = 0$$
, $x^2 - 4x + y^2 = 0$, $y = x/5$, $y = 5x$.

1.11 a)
$$y = \sqrt{24 - x^2}$$
, $2\sqrt{3y} = x^2$, $x = 0$ ($x \ge 0$);

6)
$$y^2 - 4y + x^2 = 0$$
, $y^2 - 6y + x^2 = 0$, $y = 2x$, $x = 0$.

1.12 a)
$$y = \sin x, y = \cos x, x = 0 (x \ge 0)$$
;

6)
$$x^2 - 2x + y^2 = 0, x^2 - 8x + y^2 = 0, y = x/3, y = 3x$$
.

1.13 a)
$$y = 20 - x^2, y = -8x$$
;

6)
$$x^2 - 2x + y^2 = 0$$
, $x^2 - 6x + y^2 = 0$, $y = x/4$, $y = 4x$.

1.14 a)
$$y = \sqrt{18 - x^2}$$
, $y = 3\sqrt{2} - \sqrt{18 - x^2}$;

6)
$$y^2 - 2y + x^2 = 0$$
, $y^2 - 4y + x^2 = 0$, $y = 3x$, $x = 0$.

1.15 a)
$$y = 32 - x^2$$
, $y = -4x$;

6)
$$y^2 - 2y + x^2 = 0$$
, $y^2 - 6y + x^2 = 0$, $y = x/4$, $x = 0$.

1.16 a)
$$y = 2/x$$
, $y = 5e^x$, $y = 2$, $y = 5$;

6)
$$x^2 - 2x + y^2 = 0$$
, $x^2 - 4x + y^2 = 0$, $y = 0$, $y = x/3$.

1.17 a)
$$x^2 + y^2 = 36.3\sqrt{2y} = x^2 (y \ge 0)$$
:

6)
$$v^2 - 2v + x^2 = 0$$
, $v^2 - 10v + x^2 = 0$, $v = x/2$, $v = 2x$.

1.18 a)
$$v = 3\sqrt{x}$$
, $v = 3/x$, $x = 4$:

6)
$$x^2 - 2x + v^2 = 0$$
, $x^2 - 6x + v^2 = 0$, $v = 0$, $v = x/2$.

1.19 a)
$$v = 6 - \sqrt{36 - x^2}$$
, $v = \sqrt{36 - x^2}$, $x = 0 (x \ge 0)$:

6)
$$v^2 - 2v + x^2 = 0$$
, $v^2 - 10v + x^2 = 0$, $v = x/5$, $v = 5x$.

1.20 a)
$$y = 25/-x^2$$
, $y = x - 5/2$;

6)
$$x^2 - 2x + y^2 = 0$$
, $x^2 - 6x + y^2 = 0$, $y = 0$, $y = x$.

1.21 a)
$$y = \sqrt{x}$$
, $y = 1/x$, $x = 16$;

6)
$$v^2 - 2v + x^2 = 0$$
, $v^2 - 4v + x^2 = 0$, $v = x$, $x = 0$.

1.22 a)
$$v = 2/x$$
, $v = 7e^x$, $v = 2$, $v = 7$;

Учебно-методический материал для организации СУРС

Тема 1 Приложения двойных интегралов

Основные положения и формулы, решения типовых примеров, задания к практическим занятиям по приложениям двойного интеграла излагаются в данном пособии в соответствующих разделах.

В рамках СУРС предполагается выполнение индивидуального домашнего задания (ИДЗ), а в качестве контроля — проведение деловой игры « $1 \times 2 \times 4 \times 8$ ».

ИДЗ по теме «Приложения двойных интегралов»

1 Найти площади фигур, ограниченных линиями:

1.1 a)
$$y = 3/x$$
, $y = 4e^x$, $y = 3$, $y = 4$;

6)
$$y^2 - 2y + x^2 = 0$$
, $y^2 - 4y + x^2 = 0$, $y = x/\sqrt{3}$, $y = \sqrt{3}x$.

1.2 a)
$$x = \sqrt{36 - y^2}, x = 6 - \sqrt{36 - y^2}$$
;

6)
$$x^2 - 4x + y^2 = 0$$
, $x^2 - 8x + y^2 = 0$, $y = 0$, $y = x/\sqrt{3}$.

1.3 a)
$$x^2 + y^2 = 72.6y = -x^2 (y \le 0)$$
;

6)
$$v^2 - 6v + x^2 = 0$$
, $v^2 - 8v + x^2 = 0$, $v = x/\sqrt{2}$, $v = \sqrt{2}x$

1.4 a)
$$x = 8 - y^2, x = -2y$$
;

6)
$$x^2 - 2x + v^2 = 0$$
, $x^2 - 8x + v^2 = 0$, $v = 0$, $v = x$.

1.5 a)
$$y = \frac{3}{x}, y = 8e^x, y = 3, y = 8$$
;

6)
$$y^2 - 8y + x^2 = 0$$
, $y^2 - 10y + x^2 = 0$, $y = \frac{x}{2}$, $y = 2x$.

1.6 a)
$$y = \frac{\sqrt{x}}{2}, y = \frac{1}{2x}, x = 16;$$

6)
$$x^2 - 4x + y^2 = 0$$
, $x^2 - 8x + y^2 = 0$, $y = 0$, $y = x$.

1.7 a)
$$x = 5 - y^2, x = -4y$$
;

6)
$$v^2 - 4v + x^2 = 0$$
, $v^2 - 6v + x^2 = 0$, $v = x$, $x = 0$.

1.8 a)
$$x^2 + y^2 = 12, -\sqrt{6y} = x^2 (y \le 0)$$
;

6)
$$x^2 - 2x + v^2 = 0$$
, $x^2 - 10x + v^2 = 0$, $v = x$, $v = 2x$

6)
$$\iiint_{Q} f(x, y, z) dx dy dz = \int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} dz \int_{z_{1}(x, y)}^{z_{2}(x, y)} f(x, y, z) dy;$$

B)
$$\iiint_{Q} f(x, y, z) dx dy dz = \int_{a}^{b} f(x, y, z) dx \int_{y_{1}(x)}^{y_{2}(x)} dy \int_{z_{1}(x, y)}^{z_{2}(x, y)} dz.$$

2 Сферические координаты имеют вид:

a)
$$x = r\cos\theta\sin\varphi$$
, $y = r\sin\theta\sin\varphi$, $z = r\cos\varphi$, $0 \le r < +\infty$, $0 \le \varphi \le 2\pi$, $0 \le \theta \le \pi$;

6)
$$x = r \cos \varphi \sin \theta$$
, $y = r \sin \varphi \sin \theta$, $z = r \cos \theta$, $0 \le r < +\infty$, $0 \le \varphi \le 2\pi$, $0 \le \theta \le \pi$;

B)
$$x = r\cos\varphi\sin\theta$$
, $y = r\sin\varphi\sin\theta$, $z = r\cos\theta$, $-\infty < r < +\infty$, $0 \le \varphi \le 2\pi$, $0 \le \theta \le \pi$.

3 Укажите верное равенство

a)
$$\int_{0}^{1} dx \int_{0}^{1-x} dy \int_{0}^{x+y} f(x,y,z) dz = \int_{0}^{1} dy \left\{ \int_{0}^{y} dz \int_{0}^{1-z} f(x,y,z) dx + \int_{x}^{1} dz \int_{z-y}^{1-y} f(x,y,z) dx \right\};$$

$$\mathbf{B} \int_{0}^{1} dx \int_{0}^{1-x} dy \int_{0}^{x+y} f(x,y,z) dz = \int_{0}^{1} dy \left\{ \int_{0}^{y} dz \int_{0}^{1-z} f(x,y,z) dx + \int_{x}^{1} dz \int_{z-y}^{1-y} f(x,y,z) dx \right\}.$$

4 Повторный интеграл $\int_{0}^{1} dx \int_{0}^{1-x} dy \int_{0}^{1-x-y} (x+y+z)dz$ равен:

а) 0,125; б) 0,15; в) 0,25.

5 Тройной интеграл
$$\iiint_{\Omega} (6x + 8y + 4z + 5) dx dy dz$$
 по кубу

$$Q = \{(x, y, z) \mid 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}$$
 pabeh:

а) 10; б) 14; в) 15.

6 Объем тела, ограниченного поверхностями 2y + 3z = 6, x = 0, x = 4, y = 0, z = 0, paseн

7 Тройной интеграл $\iiint_{Q} (x^2 + y^2 + z^2) dx dy dz$ по области, ограни-

ченной поверхностями $y^2 + z^2 = 4$, x = 0, x = 2, равен:

a)
$$\frac{40\pi}{3}$$
; 6) $\frac{80\pi}{9}$; B) $\frac{80\pi}{3}$.

8 Тройной интеграл $\iiint\limits_{\mathcal{Q}} \sqrt{(x^2+y^2+z^2)^3} dxdydz$ по области, огра-

ниченной поверхностью $x^2 + y^2 + z^2 = 9$, $z \ge 0$, равен:

a)
$$\frac{81\pi}{2}$$
; 6) $\frac{27\pi}{2}$; B) 243π .

9 Масса тела, ограниченного поверхностями $x^2 + y^2 = 1$, z = 0, z = 2, с плотностью $\rho(x, y, z) = (x^2 + y^2 + z)^2$ равна

10 Тройной интеграл
$$\iiint_Q \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}\right)^2 dx dy dz$$
 по области Q ,

ограниченной поверхностью $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ равен:

a)
$$\frac{4\pi abc}{7}$$
; 6) $\frac{\pi abc}{4}$; B) $\frac{3\pi abc}{4}$.

Вариант 2

1 Укажите верную формулу

a)
$$\iiint_{Q} f(x,y,z) dxdydz = \iiint_{Q} f(x(u,v,w),y(u,v,w),z(u,v,w)) |J| dudvdw;$$

6)
$$\iiint_{Q} f(x,y,z) dxdydz = \iiint_{Q'} f(x(u,v,w),y(u,v,w),z(u,v,w)) dudvdw;$$

B)
$$\iiint\limits_{Q} f(x,y,z) dxdydz = \iiint\limits_{Q} f(x(u,v,w),y(u,v,w),z(u,v,w)) J dudvdw .$$

2 Цилиндрические координаты имеют вид:

a)
$$x = r \sin \varphi$$
, $y = r \cos \varphi$, $z = r$, $0 \le r < +\infty$, $0 \le \varphi \le 2\pi$;

δ)
$$x = r \cos \varphi$$
, $y = r \sin \varphi$, $z = z$, $-\infty < r < +\infty$, $0 \le \varphi \le 2\pi$;

B)
$$x = r \cos \varphi$$
, $y = r \sin \varphi$, $z = z$, $0 \le r < +\infty$, $0 \le \varphi \le 2\pi$.

3 Укажите верное равенство

a)
$$\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy \int_{\sqrt{x^2+y^2}}^{1} f(x,y,z) dz = \int_{0}^{1} dy \int_{|y|}^{y} dx \int_{-\sqrt{x^2-y^2}}^{\sqrt{x^2-y^2}} f(x,y,z) dz$$
;

6)
$$\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy \int_{\sqrt{x^2-y^2}}^{1} f(x,y,z) dz = \int_{0}^{1} dz \int_{-z}^{z} dy \int_{-\sqrt{x^2-y^2}}^{\sqrt{x^2-y^2}} f(x,y,z) dx ;$$

B)
$$\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy \int_{\sqrt{x^2+y^2}}^{1} f(x,y,z) dz = \int_{0}^{1} dz \int_{-1}^{z} dy \int_{-\sqrt{z^2-y^2}}^{1} f(x,y,z) dx.$$

32 Найти ротор векторного поля
$$\vec{a} = xyz \cdot \vec{i} + (2x + 3y - z) \cdot \vec{j} + (x^2 + y^2) \cdot \vec{k}$$
 .

33 Найти
$$F'(y)$$
 для функции $F(y) = \int_{y}^{y^2} e^{-yx^2} dx$.

34 Исследовать равномерную сходимость интеграла
$$F\left(y\right) = \int\limits_{0}^{+\infty} \frac{\cos yx}{1+x^{2}} dx \; .$$

35 Найти синус-преобразование Фурье функции $f(x) = e^{-2x}$, $x \ge 0$.

22 Вычислить интеграл $\int_{\Gamma} \sin^2 x dx + y^2 dy, \qquad \text{где}$

$$\Gamma = \{ (x, y) | y = \cos x, \ 0 \le x \le \pi \}$$

23 Вычислить интеграл $\int\limits_{\Gamma} y dx - x dy \ dl$, где

$$\Gamma = \left\{ \left(x, y \right) \middle| x = \cos^3 t, y = \sin^3 t, 0 \le t \le \frac{\pi}{2} \right\}.$$

24 Используя формулу Грина, вычислить интеграл $\int\limits_{\Gamma} \left(1-x^2\right)\!\!y dx + x\!\left(1+y^2\right)\!\!dy \;, \; \text{где} \; \Gamma = \left\{\left(x;y\right)\middle|x^2+y^2=9\right\}.$

25 Вычислить интеграл $\iint_{\Omega} (x^2 + y^2 + z^2) ds$ по поверхности

$$\Omega = \left\{ (x; y; z) \middle| z = \sqrt{25 - x^2 - y^2} \right\}.$$

26 Вычислить интеграл $\iint_{\Omega} (y^2 + z^2) dx dy$ по верхней стороне

поверхности
$$\Omega = \left\{ \left. \left(x; y; z \right) \right| z = \sqrt{25 - x^2} , 0 \le y \le 4 \right. \right\}$$
.

27 Используя формулу Остроградского-Гаусса, вычислить интеграл $\oint_{\Omega^+} 4x^3 dy dz + 4y^3 dx dz - 6z^4 dx dy$ по внешней стороне по-

верхности
$$\Omega = \{ (x; y; z) | x^2 + y^2 = 25, 0 \le z \le 4 \}.$$

28 Применяя формулу Стокса, вычислить интеграл $\oint_{\Gamma} y dx + z^2 dy + x^2 dz$, где Γ – пересечение плоскостей $x^2 + y^2 + z^2 = 4$ и $z = \sqrt{3}$.

29 Вычислить производную по направлению функции $z = x^2y - 3xy$ в направлении вектора от точки O(0;0) к точке A(2;1).

30 Найти градиент функции $u = x^2 + y^2 + z^2 - 2xyz$ в точке A(2;-1;3).

31 Найти дивергенцию векторного поля $\vec{a} = xyz \cdot \vec{i} + (3x^2 + 3y^2) \cdot \vec{j} + (x + 2y - z) \cdot \vec{k}$.

4 Повторный интеграл
$$\int_{-1}^{0} dx \int_{-1-x}^{0} dy \int_{-1-x-y}^{0} \frac{dz}{(4x+3y+z+2)^5}$$
 равен:

а) 0; б) 10; в) 7.

5 Тройной интеграл $\iiint\limits_{Q} (7x-5y+3z+1)dxdydz$ по параллелепи-

педу
$$Q = \{(x, y, z) \mid 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}$$
 равен:

а) 156; б) 56; в) 140.

6 Объем тела, ограниченного поверхностями $y^2 = 4x + 4$, $y^2 = -2x + 4$, z = 3, z = 0, равен _______.

7 Тройной интеграл $\iiint_{Q} (x^2 + y^2 + z^2)^3 dx dy dz$ по области, ограни-

ченной поверхностями $y^2 + z^2 = 1$, y = 0, y = 1, равен:

a) 431π ; б) 422π ; в) 420π .

8 Тройной интеграл $\iiint\limits_{Q}(x^2+y^2+z^2)dxdydz$ по области, ограни-

ченной поверхностью $x^2 + y^2 + z^2 = 9$, равен:

a)
$$\frac{972\pi}{7}$$
; 6) $\frac{927\pi}{2}$; B) $\frac{972\pi}{5}$.

9 Масса тела, ограниченного поверхностями $x^2+y^2=4$, z=0, z=4 с плотностью $\rho(x,y,z)=x^2+y^2+z$ равна ______.

10 Тройной интеграл $\iiint\limits_{\mathcal{Q}} \frac{dxdydz}{\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} + 1}$ по области \mathcal{Q} , ограни-

ченной поверхностью $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, $z \ge 0$, равен:

a)
$$\frac{4-\pi}{4}$$
; 6) $\frac{4-\pi}{8}abc$; B) $\frac{2-\pi}{2}abc$.

Тест 6 Поверхностный интеграл

Вариант 1

1 По определению поверхностный интеграл 1-го рода равен:

a)
$$\iint_{\Omega} f(x, y, z) dS = \lim_{\lambda \to \infty} \sum_{k=1}^{n} f(\xi_k, \eta_k, \zeta_k) \Delta S_k,$$

$$\text{6)} \iint\limits_{\Omega} f\left(x,y,z\right) dS = \lim_{\lambda \to 0} \sum_{k=1}^{\infty} f\left(\xi_{k}, \eta_{k}, \zeta_{k}\right) \Delta S_{k} \; ,$$

B)
$$\iint_{\Omega} f(x, y, z) dS = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_k, \eta_k, \zeta_k) \Delta S_k.$$

2 Укажите верное равенство:

a)
$$\iint_{\Omega} f(x,y,z) dS = \iint_{\Omega} f(x,y,z) \frac{1}{|F'_z|} \sqrt{F_x'^2 + F_y'^2 + F_z'^2} dx dy$$

6)
$$\iint_{\Omega} f(x,y,z) dS = \iint_{G} f(x,y,z) \frac{1}{|F'_{x}|} \sqrt{F'_{x}^{2} + F'_{y}^{2} + F'_{z}^{2}} dx dy,$$

B)
$$\iint_{\Omega} f(x,y,z) dS = \iint_{\Omega} f(x,y,z) \frac{1}{F_{z}'} \sqrt{F_{x}'^{2} + F_{y}'^{2} + F_{z}'^{2}} dx dy.$$

3 Изменяется ли знак поверхностного интеграла 2-го рода при выборе ориентации поверхности?

4 Интеграл
$$\iint_{\Omega} (x-3y+2z)dS$$
, где поверхность

 $\Omega = \{(x, y, z) \mid 4x + 3y + 2z - 4 = 0, x \ge 0, y \ge 0, z \ge 0\}$ pasen:

a)
$$\frac{\sqrt{29}}{9}$$
, 6) $\frac{\sqrt{29}}{8}$, B) $\sqrt{29}$.

5 Площадь поверхности $z = x^2 + y^2$, расположенной между плоскостями z = 0 и z = 1, равна:

a)
$$\frac{\pi}{6}(5\sqrt{5}-3)$$
, 6) $\frac{\pi}{6}(5\sqrt{5}-1)$, B) $\frac{\pi}{3}(5\sqrt{5}+1)$.

6 Интеграл $\iint_{\Omega} (x^2 + y^2) dS$ по верхней половине сферы

 $x^2 + v^2 + z^2 = 25$ pasen:

a)
$$\frac{25}{3}\pi$$
, 6) $\frac{100}{3}\pi$, B) $\frac{95}{3}\pi$.

7 Интеграл $\iint_{\Omega} x dy dz + y dz dx + z dx dy$ по верхней стороне плоско-

сти x + z - 1 = 0, отсеченной плоскостями y = 0 и y = 4 равен:

a) 4, 6) 3, B) 5

8 Интеграл $\iint_{\Omega} x dy dz + (y+z) dz dx + (z-y) dx dy$, где Ω внешняя

часть поверхности $z=x^2+y^2$, отсекаемая плоскостью z=2, равен:

13 Изменить порядок интегрирования в повторном интеграле $\int\limits_0^1 dx \int\limits_0^{x^2} f(x;y) dy \; .$

14 Вычислить двойной интеграл $\iint_G \sqrt{25-x^2-y^2}\,dxdy\;,\;\;\mathrm{гдe}$ $G=\left\{(x;y)\big|x^2+y^2\leq 16\right\}\;.$

15 Вычислить двойной интеграл $\iint_G \left(x^2+y^2\right) dx dy \,, \quad \text{где}$ $G = \left\{ (x;y) \middle| x^2+y^2 \le 16, \, x^2+y^2 \ge 4 \right\} \,.$

16 Вычислить тройной интеграл $\iiint_{Q} \frac{dxdydz}{(2x+y-3z)^2}$ по области $Q = \{(x,y,z) \mid x+y+z=1, x=0, y=0, z=0 \}.$

17 Вычислить тройной интеграл $\iiint_{\mathcal{Q}} \left(x^2+y^2+z^2\right)^2 dx dy dz$ по области $\mathcal{Q}=\left\{ \ \left(x;y;z\right) \ \middle| \ x^2+y^2=4, \, z=0, \, z=4 \ \right\}$, переходя к цилиндрическим координатам.

18 Вычислить тройной интеграл $\iiint_{\mathcal{Q}} \left(x^2 + y^2 + z^2 \right)^2 dx dy dz$ по области $\mathcal{Q} = \left\{ \left. (x; y; z) \, \right| \, x^2 + y^2 + z^2 \le 4 \, \right\}$, переходя к сферическим координатам.

19 Вычислить интеграл $\int_{\Gamma} y dl$, где $\Gamma = \{ (x;y) | y = 2x, 1 \le x \le 2 \}.$

20 Вычислить интеграл $\int\limits_{\Gamma} \left(4\sqrt[3]{x}-3\sqrt{y}\right)\!dl\;, \qquad \text{где}$ $\Gamma = \left\{\left.\left(x;y\right)\right|\, x = \cos^3t,\, y = \sin^3t,\, 0 \le t \le \frac{\pi}{2}\right\}.$

21 Вычислить интеграл $\int\limits_{\Gamma} \sqrt{x^2 + y^2} \; dl$, где Γ нижняя половина кардиоиды $\rho = 2(1 + \cos \phi)$.

Типовые задачи к экзамену

- 1 Найти область определения функции $z = \frac{1}{\sqrt{16 x^2 y^2}}$.
- 2 Построить линии уровня функции $z = 4x^2 + 9y^2$.
- 3 Вычислить предел функции $\lim_{\substack{x\to 2\\y\to 0}} \frac{\sin 2xy}{y}$.
- 4 Вычислить повторные пределы $\lim_{x \to \infty} \lim_{y \to \infty} \frac{x^2 + 3y^2}{x^2 + y^3}$ и

 $\lim_{y\to\infty}\lim_{x\to\infty}\frac{x^2+3y^2}{x^2+y^3}.$

- 5 Найти частные производные функции 2-го порядка $z = y^2 \cos(x + 2y)$.
- 6 Найти полный дифференциал функции $z = 2x^2y^4 2xy$ в точке M(1;3).
- 7 Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ сложной функции $z = 5u^2 + uv^2$, где $u = x^3 + \cos y$, $v = xv \sin x$.
- 8 Найти уравнения касательной и нормали к поверхности Ω , заданной уравнением $x^2+4y^2+z^2-8z-4y+8=0$ в точке M(3;1;-1).
- 9 Проверить, удовлетворяет ли уравнению $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0 \ \text{функция} \ u = \frac{y}{x} \ .$
- 10 Исследовать на локальный экстремум функцию $z = x^3 + 8y^3 6xy + 5$.
- 11 Найти экстремум функции $z = x^2 y^2$ при условии, что переменные x и y связаны уравнением y = 2x 6.
- 12 Найти наибольшее и наименьшее значения функции z = 3x + y xy в области $\overline{D} = \{(x; y) | y = x, y = 4, x = 0\}$.

- 9 С помощью формулы Остроградского-Гаусса вычислить интеграл $\oint_{\Omega} x dy dz + y dz dx + z dx dy$, где Ω внешняя сторона пирамиды, ограниченной плоскостями x + y + z = 1, x = 0, y = 0, z = 0.

зуя в качестве поверхности вернюю часть сферы $x^2 + y^2 + z^2 = R^2$.

Вариант 2

1 По определению поверхностный интеграл 2-го рода равен:

a)
$$\iint_{\Omega} P(x, y, z) dy dz = \lim_{\lambda \to \infty} \sum_{k=1}^{n} P(\xi_{k}, \eta_{k}, \zeta_{k}) (\Omega_{k})_{xy},$$

6)
$$\iint_{\Omega} P(x, y, z) dydz = \lim_{\lambda \to 0} \sum_{k=1}^{n} P(\xi_k, \eta_k, \zeta_k) (\Omega_k)_{xy},$$

B)
$$\iint_{\Omega} P(x, y, z) dydz = \lim_{\lambda \to 0} \sum_{k=1}^{n} P(\xi_{k}, \eta_{k}, \zeta_{k}) (\Omega_{k})_{yz}.$$

2 Укажите верное равенство:

a)
$$\iint_{\Omega} f(x,y,z) dS = \iint_{\Omega} f(x,y,z(x,y)) \sqrt{1 + z_x'^2 + z_y'^2} dx dy,$$

6)
$$\iint_{\Omega} f(x, y, z) dS = \iint_{\Omega} f(x, y, z(x, y)) \sqrt{1 + z'_{y} + z'_{y}} dx dy,$$

$$\mathrm{B)} \ \iint\limits_{\Omega} f\left(x,y,z\right) dS = \iint\limits_{G} f\left(x,y,z\left(x,y\right)\right) \sqrt{1+{z_x'}^2+{z_y'}^2} \, dx dy \ .$$

- 3 Изменяется ли знак поверхностного интеграла 1-го рода при выборе ориентации поверхности?
 - 4 Интеграл $\iint\limits_{\Omega} \sqrt{1+4x^2+4y^2} \, dS \,, \quad \text{где} \qquad \text{поверхность}$

 $\Omega = \{(x, y, z) \mid z = 1 - x^2 - y^2, z = 0\}$ pabeh:

- a) 3π , 6) π , 8) 4π .
- 5 Площадь поверхности $z^2 = x^2 + y^2$, расположенной между плоскостями z = 0 и z = 1, равна:

a)
$$\pi(\sqrt{2}+1)$$
, 6) $\pi(\sqrt{2}-1)$, B) $2\pi(\sqrt{2}+1)$.

6 Интеграл $\iint_{\Omega} (3x^2 + 5y^2 + 3z^2 - 2)dS$ по поверхности

 $y = \sqrt{x^2 + z^2}$, отсеченной плоскостью y = 1, равен:

- a) $\sqrt{2}\pi$, б) $3\sqrt{2}\pi$, в) $2\sqrt{2}\pi$.
- 7 Интеграл $\iint_{\Omega} (5x^2 + 5y^2 + 3z^2) dxdy$ по верхней стороне поверх-

ности $z = \sqrt{x^2 + y^2}$, отсеченной плоскостями z = 0 и z = 1 равен:

- a) -4π , 6) -3π , B) 4π .
- 8 Интеграл $\iint\limits_{\Omega} \left(\frac{x^2}{16} + \frac{y^2}{9} \right) dx dy$, где Ω внешняя часть поверхно-

сти $z = 4 - \frac{x^2}{16} - \frac{y^2}{9}$, отсекаемая плоскостью z = 0, равен:

- a) 90π , 6) 96π , 1 96π .
- 9 С помощью формулы Остроградского-Гаусса вычислить $\iint\limits_{\Omega}x^2dydz+y^2dzdx+z^2dxdy \text{ , где }\Omega-\text{часть конической поверхности}$

 $x^2 + y^2 = z^2$, отсекаемая плоскостями z = 0, z = 4.

 $10~{\rm C}$ помощью формулы Стокса вычислить интеграл $\iint\limits_{\Gamma} y dx + z dy + x dz$, где $~\Gamma$ — окружность, пробегаемая против часо-

вой стрелки, если смотреть с положительной стороны оси Ox, $\Gamma = \left\{ \left(x,y,z \right) \mid x^2 + y^2 + z^2 = a^2, \, x + y + z = 0 \right\}.$

Тест 7 Элементы векторного анализа

Вариант 1

1 Линия, для которой в каждой ее точке M вектор $\vec{a}(M)$ направлен по касательной к данной линии, называется

3 Укажите верную формулу:

a) rot
$$\vec{a} = \left(\frac{\partial Z}{\partial y} + \frac{\partial Y}{\partial z}\right) \vec{i} + \left(\frac{\partial X}{\partial z} + \frac{\partial Z}{\partial x}\right) \vec{j} + \left(\frac{\partial Y}{\partial x} + \frac{\partial X}{\partial y}\right) \vec{k}$$
;

- 57. Производная по направлению скалярного поля, градиент.
- 58 Определение векторного поля, векторные линии.
- 59 Дивергенция векторного поля.
- 60 Циркуляция векторного поля и ее физический смысл.
- 61 Ротор векторного поля.
- 62* Определение и непрерывность собственных интегралов, зависящих от параметра.
- 63* Дифференцирование и интегрирование собственных интегралов, зависящих от параметра.
- 64 Определение и сходимость несобственных интегралов, зависящих от параметра.
- 65* Признак Вейерштрасса равномерной сходимости несобственных интегралов, зависящих от параметра.
- 66* Признак Дирихле равномерной сходимости несобственных интегралов, зависящих от параметра.
- 67 Свойства несобственных интегралов, зависящих от параметра (непрерывность, дифференцируемость, интегрируемость).
 - 68. Определение и свойства гамма-функции.
 - 69 Определение и свойства бета-функции.
 - 70* Преобразование Фурье и его свойства.

² Векторное поле $\vec{a} = \vec{a} (M)$ называется соленоидальным, если в любой точке M справедливо равенство ______.

- 25 Вычисление криволинейного интеграла 1-го рода.
- 26 Задача о работе переменной силы.
- 27 Определение и свойства криволинейного интеграла 2-го рода.
 - 28 Вычисление криволинейного интеграла 2-го рода.
- 29* Связь между криволинейными интегралами 1-го и 2-го рода.
 - 30 Множества, измеримые по Жордану, критерий измеримости.
 - 31 Задачи, приводящие к понятию двойного интеграла.
 - 32 Определение и свойства двойного интеграла.
- 33* Вычисление двойного интеграла (случай прямоугольной области).
- 34* Вычисление двойного интеграла (случай криволинейной области).
 - 35* Формула Грина.
- 36* Условия независимости криволинейного интеграла 2-го рода от пути интегрирования.
- 37* Замена переменных в двойном интеграле, полярные координаты.
 - 38 Задача о массе пространственного тела.
 - 39 Определение и свойства тройного интеграла.
 - 40 Вычисление тройного интеграла.
- 41 Замена переменных в тройном интеграле, цилиндрические координаты.
- 42 Замена переменных в тройном интеграле, сферические координаты.
- 43 Способы задания поверхности, простые поверхности, особые точки поверхности.
 - 44 Касательная и нормаль к поверхности.
 - 45 Площадь поверхности
- 46 Ориентация поверхности, односторонние и двусторонние поверхности.
 - $4\overline{7}$ Задача о массе изогнутой пластины.
 - 48 Определение и свойства поверхностного интеграла 1-го рода.
 - 49 Вычисление поверхностного интеграла 1-го рода.
 - 50 Задача о потоке жидкости.
 - 51 Определение и свойства поверхностного интеграла 2-го рода.
 - 52 Вычисление поверхностного интеграла 2-го рода.
 - 53 Связь между поверхностными интегралами 1-го и 2-го родов.
 - 54* Формула Остроградского-Гаусса.
 - 55* Формула Стокса.
 - 56 Поверхности и линии уровня скалярного поля.

6) rot
$$\vec{a} = \left(\frac{\partial Z}{\partial y} - \frac{\partial Y}{\partial z}\right)\vec{i} + \left(\frac{\partial X}{\partial z} - \frac{\partial Z}{\partial x}\right)\vec{j} + \left(\frac{\partial Y}{\partial x} - \frac{\partial X}{\partial y}\right)\vec{k}$$
;

$$6) \ \operatorname{rot} \vec{a} = \left(\frac{\partial Z}{\partial y} - \frac{\partial Y}{\partial z}\right) \vec{i} + \left(\frac{\partial Z}{\partial x} - \frac{\partial X}{\partial z}\right) \vec{j} + \left(\frac{\partial Y}{\partial x} - \frac{\partial X}{\partial y}\right) \vec{k} \ .$$

- 4 Выбрать верное утверждение:
- а) для того чтобы векторное поле $\vec{a}(M)$ было потенциальным в односвязной области Q , необходимо и достаточно, чтобы $\operatorname{grad}\vec{a}(M)=0$;
- б) для того чтобы векторное поле $\vec{a}(M)$ было потенциальным в односвязной области Q , необходимо и достаточно, чтобы $\operatorname{div} \vec{a}(M) = 0$;
- в) для того чтобы векторное поле $\vec{a}(M)$ было потенциальным в односвязной области Q , необходимо и достаточно, чтобы $\cot \vec{a}(M) = 0$;
 - 5 Линии уровня скалярного поля $U = x^2 + y^2$ имеют вид
 - 6 Поверхности уровня скалярного поля U = x + y + z имеют вид
- 7 Производная функции $f = \sqrt{x^2 + y^2 + z^2}$ в точке P = (1,1,1) по направлению вектора $\vec{l} = (2,1,0)$ равна:

a) 1; 6)
$$\frac{\sqrt{15}}{5}$$
; B) $\frac{\sqrt{14}}{5}$.

- 8 Градиент скалярного поля $U = x^2 + 2y^2 + 3z^2 xz + yz xy$ в точке P(1;-1;1) равен:
 - a) $2\vec{i} 4\vec{j} + 4\vec{k}$; 6) $2\vec{i} + 4\vec{j} + 4\vec{k}$; 4 B) $2\vec{i} 4\vec{j} 4\vec{k}$.
- 9 Циркуляция векторного поля $\vec{a} = y\vec{i} x\vec{j}$ вдоль замкнутой линии Γ , образованной осями координат и частью астроиды $\vec{r} = R\cos^3 t\,\vec{i} + R\sin^3 t\,\vec{j}$, лежащей в первой четверти, равна:

a)
$$-\frac{3}{16\pi R^2}$$
; 6) $\frac{3}{16\pi R^2}$; B) $\frac{3}{14\pi R^2}$.

10 Поток векторного поля $\vec{a}=xy\,\vec{i}+ig(y+zig)\,\vec{j}+ig(x+2zig)\vec{k}$ через часть плоскости 2x+y+z=2 , лежащей в первом октанте равен

Вариант 2

- 1 Множество точек скалярного поля, в каждой из которых потенциал сохраняет постоянное значение, называется
- 2 Векторное поле $\vec{a} = \vec{a} (M)$ называется потенциальным, если существует непрерывно дифференцируемая скалярная функция U(M) такая, что ________.
 - 3 Укажите верную формулу:

a) div
$$\vec{a} = \frac{\partial^2 X}{\partial x^2} + \frac{\partial^2 Y}{\partial y^2} + \frac{\partial^2 Z}{\partial z^2}$$
;

6) div
$$\vec{a} = \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} + \frac{\partial Z}{\partial z}$$
;

6) div
$$\vec{a} = \frac{\partial X}{\partial y} + \frac{\partial Y}{\partial z} + \frac{\partial Z}{\partial x}$$
.

- 4 Выбрать верное утверждение:
- а) если векторное поле $\vec{a}(M)$ соленоидальное, то поток вектора $\vec{a}(M)$ через любую замкнутую поверхность равен нулю;
- б) векторное поле $\vec{a}(M)$ соленоидальное тогда и только тогда, когда поток вектора $\vec{a}(M)$ через любую замкнутую поверхность равен нулю;
- в) если векторное поле $\vec{a}(M)$ соленоидальное, то поток вектора $\vec{a}(M)$ через любую поверхность равен нулю;
 - 5 Линии уровня скалярного поля $U = x^2 y^2$ имеют вид

6 Поверхности уровня скалярного поля $U = \sqrt{x^2 + y^2 + z^2}$ имеют вид ______.

7 Производная функции $f=x^2y+xz^2-2$ в точке P=(1,1,-1) по направлению вектора $\vec{l}=(1,-2,4)$ равна:

а) 1; б) 9; в) -9.

(* отмечены вопросы, содержащие теорему с доказательством)

- 1 Определение евклидова пространства \Box n , сходимость последовательности точек в \Box n
 - 2 Подмножества пространства □ ⁿ, компакт.
 - 3 Предел функции многих переменных.
 - 4* Повторные пределы.
 - 5 Непрерывность функции.
 - 6 Частные и полные приращения функции многих переменных.
- 7 Частные производные функции двух переменных и их геометрический и механический смысл.
 - 8* Касательная плоскость и нормаль к поверхности.
- 9* Дифференцируемость функций многих переменных, необходимое условие дифференцируемости.
- 10* Достаточное условие дифференцируемости функции многих переменных.
- 11.* Дифференцирование сложной функции многих переменных.
- 12 Полный дифференциал функции двух переменных и его геометрический смысл.
 - 13* Теорема о равенстве смешанных производных.
- 14. Дифференциалы высших порядков функции двух переменных.
 - 15* Формула Тейлора для функции двух переменных.
- 16* Локальный экстремум функции многих переменных, необходимые условия локального экстремума.
- 17* Достаточные условия локального экстремума функции двух переменных.
- 18 Неявные функции двух переменных, определяемые одним уравнением, теоремы существования и дифференцирования.
- 19 Неявные функции многих переменных, определяемые системой уравнений, достаточное условие независимости.
 - 20 Условный экстремум, метод исключения части переменных.
 - 21* Необходимое условие Лагранжа условного экстремума.
- 22 Глобальный экстремум функции двух переменных на компакте.
- 23 Задачи, приводящие к понятию криволинейного интеграла 1-го рода.
- 24 Определение и свойства криволинейного интеграла 1-го рода.

Вариант 2

1 Найти массу материальной кривой $x = 4(t - \sin t)$, $y = 4(1 - \cos t)$, $0 \le t \le 2\pi$, с плотностью $\rho(x; y) = 2x$.

2 Найти работу A переменной силы $\vec{F} = y\,\vec{i} - 3x\,\vec{j}$ вдоль дуги астроиды $x = \cos^3 t$, $y = \sin^3 t$, $0 \le t \le \frac{\pi}{6}$.

3 Найти статические моменты относительно осей координат, центр тяжести и моменты инерции однородной пластинки, ограниченной линиями $x^2+y^2=16$, $x^2+y^2=9$.

4 Найти массу шара $x^2 + y^2 + z^2 \le 9$, если его плотность $\rho(x;y;z) = \sqrt{\left(x^2 + y^2 + z^2\right)^3}$.

5 Найти площадь части поверхности параболоида $y = 1 - x^2 - z^2$, вырезанной цилиндром $x^2 + z^2 = 1$.

6 Вычислить интеграл $\iint_{\Omega} x^2 dy dz - y^2 dz dx - z^2 dx dy$, где Ω – внешняя сторона поверхности куба $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$.

7 Вычислить циркуляцию векторного поля $\vec{a} = y\vec{i} + x\vec{j} - z\vec{k}$ вдоль контура $\Gamma = \{(x; y; z) \mid x = \cos t; y = \sin t; z = 3\}$.

8 Выяснить, является ли соленоидальным и потенциальным векторное поле $\vec{a} = yz\,\vec{i} + xz\,\vec{j} + xy\,\vec{k}$.

9 Найти производную $\frac{dF}{dy}$ функции $F(y) = \int_{y^2}^{\sin y} \ln(x+y^2) dx$.

10 С помощью интегралов Эйлера вычислить $\int\limits_0^{+\infty} \frac{\sqrt{x}}{\left(1+x\right)^3} dx$.

8 Градиент скалярного поля $U = x^2 - 2y^2 + 4z^2 - 2xz + yz - 2xy$ в точке P(-1;1;1) равен:

a) $-6\vec{i} - \vec{j} + 11\vec{k}$; 6) $6\vec{i} - \vec{j} + 11\vec{k}$; 4 B) $-6\vec{i} + \vec{j} - 11\vec{k}$.

9 Циркуляция векторного поля $\vec{a} = y^2 \vec{i}$ вдоль замкнутой линии Γ , образованной правой половиной эллипса $\vec{r} = b \cos t \vec{i} + c \sin t \vec{j}$ и осью Oy, равна:

a) 1; б) 0; в) -1.

10 Поток векторного поля $\vec{a} = x^3 \vec{i} + y^3 \vec{j} + z^3 \vec{k}$ через поверхность сферы $x^2 + y^2 + z^2 = R^2$ равен ______.

Задания к контрольным работам

Контрольная работа по разделу «Дифференциальное исчисление функции многих переменных»

Вариант 1

1 Вычислить пределы:

a)
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{\sqrt{x^2y^2+1}-1}{x^2+y^2}$$
;

б)
$$\lim_{x \to \infty} \lim_{y \to \infty} \frac{\sqrt{x^2 y^2 + 1} - 1}{x^2 + y}$$
 и $\lim_{y \to \infty} \lim_{x \to \infty} \frac{\sqrt{x^2 y^2 + 1} - 1}{x^2 + y}$.

2 Найти дифференциал 1-го порядка в точке $M\left(0;0;2\right)$ функции $z\left(x;y\right)$, заданной уравнением $z^{3}+3xyz=8$.

3 Найти разложение в ряд Тейлора в окрестности точки (0;0) до членов 2-го порядка функции $z(x;y) = e^x \sin y$.

4 Найти наибольшее и наименьшее значение функции $z(x;y) = x^2 + 2xy - y^2 - 4x$ на компакте \overline{D} , ограниченном кривыми x - y + 1 = 0, x = 3, y = 0.

5 Решить дифференциальное уравнение $y \frac{dz}{dx} - x \frac{dz}{dy} = 0$ с помощью замены переменных $\xi = x$, $\eta = x^2 + y^2$.

Вариант 2

1 Вычислить пределы:

a)
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{x^2+y^2}{\sqrt{x^2y^2+1}-1}$$
;

6)
$$\lim_{x \to \infty} \lim_{y \to \infty} \frac{x^2 + y}{\sqrt{x^2 y^2 + 1} - 1}$$
 u $\lim_{y \to \infty} \lim_{x \to \infty} \frac{x^2 + y}{\sqrt{x^2 y^2 + 1} - 1}$.

2 Найти дифференциал 1-го порядка в точке $M\left(0;0;1\right)$ функции $z\left(x;y\right)$, заданной уравнением $e^{z}-xyz=e$.

3 Найти разложение в ряд Тейлора в окрестности точки (0;0) до членов 2-го порядка функции $z(x;y) = e^x \cos y$.

4 Найти наибольшее и наименьшее значение функции $z(x;y)=x^2+y^2-2x-2y+8$ на компакте \overline{D} , ограниченном кривыми x+y-1=0 , x=0 , y=0 .

5 Решить дифференциальное уравнение $\frac{du}{dx} + \frac{du}{dy} + \frac{du}{dz} = 0$ с помощью замены переменных $\xi = x$, $\eta = x - y$, $\zeta = z - x$.

Контрольная работа по разделу «Интегральное исчисление функции многих переменных»

Вариант 1

1 Найти массу материальной кривой $x = 2(t - \sin t)$, $y = 2(1 - \cos t)$, $0 \le t \le 2\pi$, с плотностью $\rho(x; y) = x$.

2 Найти работу A переменной силы $\vec{F}=y\vec{i}+x\vec{j}$ вдоль дуги астроиды $x=2\cos^3 t$, $y=2\sin^3 t$, $0\leq t\leq \frac{\pi}{4}$.

3 Найти статические моменты относительно осей координат, центр тяжести и моменты инерции однородной пластинки, ограниченной линиями $x^2 + y^2 = 4$, $x^2 + y^2 = 25$.

4 Найти массу шара $x^2+y^2+z^2 \le 4$, если его плотность $\rho(x;y;z) = \sqrt{x^2+y^2+z^2}$.

5 Найти площадь части поверхности параболоида $x = 1 - y^2 - z^2$, вырезанной цилиндром $y^2 + z^2 = 1$.

6 Вычислить интеграл $\iint_{\Omega} x^2 dy dz + y^2 dz dx + z^2 dx dy$, где Ω – внешняя сторона поверхности куба $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$.

7 Вычислить циркуляцию векторного поля $\vec{a} = y\vec{i} - x\vec{j} + z\vec{k}$ вдоль контура $\Gamma = \{(x; y; z) \mid x = \cos t; y = \sin t; z = 2\}$.

8 Выяснить, является ли соленоидальным и потенциальным векторное поле $\vec{a} = x^2z\vec{i} + y^2\vec{j} - xz^2\vec{k}$.

9 Найти производную $\frac{dF}{dy}$ функции $F(y) = \int_{y^2}^{\sin y} \ln(2y^2 - x) dx$.

10 С помощью интегралов Эйлера вычислить $\int\limits_{0}^{+\infty} \frac{\sqrt[4]{x}}{\left(1+x\right)^{2}} dx$.