Лекция 2. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА

- 1. Определение и сходимость несобственных интегралов, зависящих от параметра.
- 2. Признаки равномерной сходимости несобственных интегралов, зависящих от параметра.

1. Определение и сходимость несобственных интегралов, зависящих от параметра.

Пусть функция f(x; y) определена в области

$$\Pi_{\infty} = \left\{ \left(x; y \right) \middle| -\infty < a \le x \le b \le +\infty, \ y \in Y \right\}.$$

И пусть функция $\Phi(y) = \int_{a}^{b} f(x; y) dx$ удовлетворяет условиям:

- 1) $-\infty$ < a < b ≤ $+\infty$ (b может быть конечным или бесконечным),
- 2) для любого $y \in Y$ функция f(x; y) интегрируема по переменной x на каждом отрезке $[a; \eta]$, где $a < \eta < b \le +\infty$.

Если b конечно, то имеем несобственный интеграл от неограниченной функции

$$\Phi(y) = \lim_{\eta \to b-0} \int_{a}^{\eta} f(x; y) dx,$$

если b бесконечно, то имеем несобственный интеграл с бесконечным верхним пределом

$$\Phi(y) = \int_{a}^{+\infty} f(x; y) dx.$$

Будем рассматривать только второй случай.

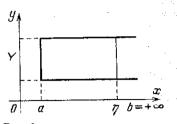


Рис.1.

Определение 1. Несобственным интегралом, зависящим от параметра, называется интеграл вида

$$\Phi(y) = \int_{a}^{+\infty} f(x; y) dx, \qquad (1)$$

где переменная у называется параметром.

Аналогично вводятся несобственные следующие интегралы, зависящим от параметра y:

$$\Phi(y) = \int_{-\infty}^{b} f(x; y) dx , \ \Phi(y) = \int_{-\infty}^{+\infty} f(x; y) dx$$

Определение 2. Несобственный интеграл, зависящий от параметра y, $\Phi(y) = \int_a^b f(x;y) dx$ называется *сходящимся (поточечно)*, если $\forall y \in Y$ и $b \le +\infty$ существует конечный предел

$$\lim_{\eta \to b-0} \int_{a}^{\eta} f(x; y) dx = \int_{a}^{b} f(x; y) dx, \qquad (2)$$

т.е. $\forall y \in Y$ интеграл $\Phi(y) = \int_a^b f(x;y) dx$ сходится как несобственный.

Поскольку
$$\int_{a}^{b} f(x;y)dx = \int_{a}^{\eta} f(x;y)dx + \int_{\eta}^{b} f(x;y)dx$$
, то для сходя щегося интеграла имеем $\lim_{\eta \to 0} \int_{\eta}^{b} f(x;y)dx = 0$.

Символическая запись:

$$\lim_{\eta \to b^{-0}} \int_{a}^{\eta} f(x; y) dx = \int_{a}^{b} f(x; y) dx \iff$$

$$\Leftrightarrow \forall y \in Y \ \forall \varepsilon > 0 \ \exists b'(y; \varepsilon) < b : \forall \eta \in (b'; b) \Rightarrow$$

$$\Rightarrow \left| \int_{a}^{b} f(x; y) dx - \int_{a}^{\eta} f(x; y) dx \right| \leq \left| \int_{\eta}^{b} f(x; y) dx \right| < \varepsilon.$$

Равномерная сходимость интеграла $\Phi(y) = \int_{a}^{b} f(x; y) dx$ будет, если $\int_{n}^{b} f(x; y) dx \to 0$ при $\eta \to b$.

Определение 3. Несобственный интеграл, зависящий от параметра, $\Phi(y) = \int\limits_a^b f(x;y) dx$ называется равномерно сходящимся по параметру y на множестве Y, если для любого $\varepsilon > 0$ существует такое $b'(y;\varepsilon) > 0$, $a \le b' < b$, что для всех $y \in Y$ и всех η , $b' < \eta < b$, выполняется неравенство $\left|\int\limits_b^b f(x;y) dx\right| < \varepsilon$.

Обозначим $\Phi(y;\eta) = \int_a^\eta f(x;y) dx$, где $a < \eta < b \le +\infty$. Тогда интеграл $\Phi(y) = \int_a^b f(x;y) dx$ равномерно сходится, если $\Phi(y;\eta) \xrightarrow{\rightarrow} \Phi(y)$ при $\eta \to b$.

Символическая запись:

$$\int_{a}^{\eta} f(x;y) dx \xrightarrow{\rightarrow} \int_{a}^{b} f(x;y) dx , \text{при } \eta \to b , \Leftrightarrow$$

$$\Leftrightarrow \forall \varepsilon > 0 \ \exists b'(y;\varepsilon) < b : \forall y \in Y \text{ и } \forall \eta \in (b';b) \Rightarrow$$

$$\Rightarrow \left| \int_{b'}^{b} f(x; y) dx \right| < \varepsilon$$
.

Пример. Исследовать на равномерную сходимость интеграл

$$\int_{0}^{+\infty} e^{-x} \cos xy dx, \ y \in \mathbf{R}.$$

Решение. Возьмем $\forall \varepsilon > 0$.

Покажем, что существует $b'=b'(y;\varepsilon)$

Имеем

$$\left| \int_{\eta}^{+\infty} e^{-x} \cos xy dx \right| \le \int_{\eta}^{+\infty} e^{-x} dx = e^{-\eta} \le \frac{\varepsilon}{2} < \varepsilon.$$

Положим $b'(y;\varepsilon) = \ln \frac{2}{\varepsilon}$. Тогда $\forall \eta \in [b';+\infty)$ выполняется неравенство

$$\left| \int_{\eta}^{+\infty} e^{-x} \cos xy dx \right| < \varepsilon .$$

Значит, интеграл сходится равномерно по параметру y на $\textbf{\textit{R}}$.

Теорема 1 (критерий Коши равномерной сходимости несобственного интеграла по параметру). Для того чтобы несобственный интеграл $\Phi(y) = \int\limits_a^b f(x;y) dx$ сходился равномерно по параметру y на множестве $Y \in \mathbf{R}$, необходимо и достаточно, чтобы $\forall \ \varepsilon > 0 \ \exists b' \in [a,b)$ такое, что $\forall \ \eta, \eta' \in [b';b)$ и $\forall \ y \in Y$ выполнялось неравенство

$$\left| \int_{\eta}^{\eta'} f(x; y) dx \right| < 0.$$

► Необходимость. Пусть $\int_{a}^{b} f(x;y) dx$ равномерно сходится по параметру y на множестве Y. Тогда $\forall \ \varepsilon > 0 \ \exists b' \in [a,b)$ такое, что $\forall \ \eta \in [b';b)$ и $\forall \ y \in Y$ выполнялось неравенство

$$\left|\int_{\eta}^{b} f(x;y)dx\right| < \frac{\varepsilon}{2}.$$

Пусть $\eta, \eta \xi' \in [b'; b)$ и $\forall y \in Y$.

Тогда

$$\left| \int_{\eta}^{\eta'} f(x; y) dx \right| = \left| \int_{\eta}^{b} f(x; y) dx - \int_{\eta'}^{b} f(x; y) dx \right| \le$$

$$\le \left| \int_{\eta}^{b} f(x; y) dx \right| + \left| \int_{\eta'}^{b} f(x; y) dx \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

 \mathcal{A} остаточность. Пусть $\forall \varepsilon > 0 \quad \exists b' \in [a,b)$ такое, что $\forall \eta, \eta' \in [b';b)$ и $\forall y \in Y$ выполнено неравенство

$$\left|\int_{\eta}^{\eta'} f(x;y)dx\right| < 0.$$

Тогда, в силу критерия Коши сходимости несобственных интегралов, $\int\limits_a^b f(x;y)dx$ сходится при $\forall \ y \in Y$. В силу произвольности η' , переходя к пределу при $\eta' \! \to \! b \! - \! 0$, получаем, что $\forall \ \eta \in \! \big[b';b\big)$ и $\forall \ y \in \! Y$ выполнено неравенство $\left|\int\limits_\eta^b f(x;y)dx\right| \! < \! \varepsilon$.

Отсюда следует, что интеграл $\int_{a}^{b} f(x; y) dx$ сходится равномерно по параметру y на множестве Y.

Следствие. Eсли $\exists \varepsilon_0 > 0$ такое, что $\forall b' \in [a,b)$ $\exists \eta_0, \eta_0' \in [b';b)$ и $\exists y_0 \in Y$ такие, что

$$\left| \int_{\eta_0}^{\eta_0} f(x; y) dx \right| \ge \varepsilon_0,$$

то интеграл $\int_{a}^{b} f(x; y) dx$ не сходится равномерно по параметру y у на множестве Y.

Пример. Исследовать на равномерную сходимость интеграл

$$\int_{0}^{+\infty} y e^{-xy} dx , y \in [0; +\infty).$$

$$\int_{\eta}^{+\infty} y e^{-xy} dx = \int_{b'}^{+\infty} y e^{-xy} dx = \begin{bmatrix} t = xy, \\ y = \frac{t}{x}, \\ x = \frac{t}{y}, dx = dt \end{bmatrix} =$$

$$= \int_{b' \cdot v}^{+\infty} e^{-t} dt = \int_{1}^{+\infty} e^{-t} dt = e^{-1} = \varepsilon.$$

Следовательно, интеграл $\int_{0}^{+\infty} y e^{-xy} dx$ сходится неравномерно по параметру y на множестве $Y = [0; +\infty)$.

2. Признаки равномерной сходимости несобственных интегралов, зависящих от параметра.

Теорема 2 (признак Вейерштрасса равномерной сходимости несобственного интеграла по параметру). Пусть существует функция $g(x) \ge 0$, удовлетворяющая условиям

- I) g(x) определена на [a;b) и интегрируема на $[a;\eta]$, $a<\eta< b\leq +\infty$;
 - 2) $|f(x;y)| \le g(x)$ для $\forall x \in [a;b)$ и $\forall y \in Y$;
 - 3) $\int_{a}^{b} g(x)dx$ сходится.

Тогда интеграл $\Phi(y) = \int_a^b f(x;y) dx$ сходится абсолютно и равномерно на Y.

▶ Зафиксируем произвольное $\varepsilon > 0$. Тогда из сходимости $\int_a^b g(x) dx$, согласно критерию Коши сходимости интегралов, следует, что существует такое число $\eta(\varepsilon) > 0$, $a \le \eta(\varepsilon) < b$, что для всех η' и η'' , $\eta(\varepsilon) < \eta' < b$, $\eta(\varepsilon) < \eta'' < b$, выполнялось неравенст-

BO
$$\left| \int_{\eta'}^{\eta''} g(x) dx \right| < \varepsilon .$$

Тогда
$$\left|\int_{\eta'}^{\eta''} f(x;y)dx\right| \le \int_{\eta'}^{\eta''} |f(x;y)|dx \le \int_{\eta'}^{\eta''} |g(x)|dx < \varepsilon$$
.

Пример. Исследовать на равномерную сходимость интегра-

лы 1) $\int_{0}^{+\infty} e^{-\alpha x^{2}} dx$ по параметру α при $\alpha \in [0;+\infty)$,

2)
$$\int_{0}^{+\infty} \frac{dx}{x^2 + y^2 + 1}, y \in \mathbf{R}$$
.

Решение.

1. Для интеграла $\int\limits_0^{+\infty} e^{-\alpha x^2} dx$ возможны два случая.

Cлучай 1. Пусть $0<lpha_0\lelpha$. Так как $e^{-lpha x^2}\le e^{-lpha_0 x^2}$ и $\int\limits_0^{+\infty}e^{-lpha_0 x^2}dx$ сходится, то по признаку Вейерштрасса интеграл $\int\limits_0^{+\infty}e^{-lpha x^2}dx$ сходится равномерно по параметру lpha на множестве $[lpha_0;+\infty)$.

Случай 2. Пусть $\alpha \in (0; +\infty)$. Покажем, что на $(0; +\infty)$ интеграл $\int\limits_0^{+\infty} e^{-\alpha x^2} dx$ сходится неравномерно. Воспользуемся следствием из критерия Коши.

Возьмем $\varepsilon = \frac{1}{e}$, $\forall b > 0$ возьмем $\eta_0 = b$, $\eta_0^{'} = b + 1$, $\alpha_0 = \frac{1}{(b+1)^2}$. Тогда $\int_{a}^{\eta_0^{'}} \varepsilon^{-\alpha_0 x^2} dx = \int_{b}^{b+1} e^{-\alpha_0 x^2} dx \ge e^{-\alpha_0 (b+1)^2} \int_{b}^{b+1} dx = \frac{1}{e} = \varepsilon_0 \ .$

Следовательно, интеграл $\int_{0}^{+\infty} e^{-\alpha x^2} dx$ сходится неравномерно по параметру α на множестве $[\alpha_0; +\infty)$.

2. Подынтегральная функция есть $f(x; y) = \frac{1}{x^2 + y^2 + 1}$.

Возьмем функцию $g(x) = \frac{1}{x^2 + 1}$, для которой

$$f(x;y) = \frac{1}{x^2 + y^2 + 1} \le \frac{1}{x^2 + 1} = g(x).$$

Интеграл $\int\limits_0^{+\infty} \frac{dx}{x^2+1} = \frac{\pi}{2}$ и является сходящимся для всех $x \in [0;+\infty)$.

Тогда интеграл $\int\limits_0^{+\infty} \frac{dx}{x^2+y^2+1}$ сходится равномерно согласно признаку Вейерштрасса.

Замечание. Пусть интеграл $\Phi(y) = \int_a^b f(x;y) dx$ (равномерно) сходится на множестве Y . И пусть последовательность (η_n) , n=1,2,3,..., $a \leq \eta_n < b$, $\eta_0 = a$, сходится к b . Тогда последовательность функций $\Phi_n(y) = \int_a^{\eta_n} f(x;y) dx$ (равномерно) сходится на множестве Y к функции $\Phi(y) = \int_a^b f(x;y) dx$.

Теорема 3 (признак Дирихле равномерной сходимости несобственного интеграла по параметру). Пусть I) $\forall y \in Y$ функции f(x;y), g(x;y) и $\frac{\partial g}{\partial x}$ непрерывны как функции x на полуинтервале $[a;+\infty)$;

- 2) функция F(x; y), являющаяся при любом $y \in Y$ первообразной по x функции f(x; y), ограничена при $y \in Y$, $x \in [a; +\infty)$;
 - 3) $\frac{\partial g}{\partial x} \le 0$ npu $y \in Y$, $u \ x \in [a; +\infty)$;
- 4) существует непрерывная на $[a;+\infty)$ функция $\psi(x)$ такая, что $\lim_{x\to +\infty} \psi(x) = 0$ и $|g(x;y)| \le \psi(x)$ для $y \in Y$ и $x \in [a;+\infty)$.

Тогда интеграл

$$\int_{a}^{+\infty} f(x;y)g(x;y)dx$$

сходится равномерно по параметру у на множестве Ү.

▶ По признаку Дирихле (для несобственных интегралов) несобственный интеграл $\int_a^{+\infty} f(x;y)g(x;y)dx$ сходится при любом $y \in Y$. Покажем, что он сходится равномерно по параметру y на множестве Y.

Так как по условию 4 функция $\psi(x) \to 0$ при $x \to +\infty$, то $\forall \varepsilon > 0$ $\exists a' > a$ такое, что $\forall \eta \in [a'; +\infty)$ выполнено неравенство

$$\psi(x) < \frac{\varepsilon}{2C}$$
,

где C есть постоянная, ограничивающая, в силу условия 2, первообразную F(x;y).

Пусть $y \in Y$ и $\eta \in [a'; +\infty)$.

Воспользовавшись формулой интегрирования по частям и тем, что $g(x;y) \to 0$ при $x \to +\infty$ получаем

$$\int_{\eta}^{+\infty} f(x;y)g(x;y)dx = F(\eta;y)g(\eta;y) - \int_{\eta}^{+\infty} F(x;y)\frac{\partial g(x;y)}{\partial x}dx.$$

Так как по условию теоремы $|F(x;y)| \le C$ и $\frac{\partial g}{\partial x} \le 0$, $|g(x;y)| \le \psi(x)$, то получаем, что $\forall \eta \in [a';+\infty)$ выполнено неравенство

$$\left| \int_{\eta}^{+\infty} f(x; y) g(x; y) dx \right| \le C \psi(x) + \int_{\eta}^{+\infty} C \left| \frac{\partial g(x; y)}{\partial x} \right| dx =$$

$$= C \psi(x) - \int_{\eta}^{+\infty} C \frac{\partial g(x; y)}{x} dx = C \psi(x) + C g(\eta; y) \le 2C \psi(x) < \varepsilon.$$

Отсюда следует, что интеграл $\int_{a}^{+\infty} f(x;y)g(x;y)dx$ сходится равномерно по параметру y на множестве Y.

Замечание. Если $+\infty$ единственная особая точка сходящегося интеграла $\int_{a}^{+\infty} f(x;y)g(x;y)dx$, то интеграл сходится равномерно по параметру y на множестве Y в том и только в том случае, когда при любом a'>a интеграл $\int_{a'}^{+\infty} f(x;y)g(x;y)dx$ сходится равномерно по параметру y на множестве Y. Поэтому для справедливости утверждения теоремы 2 достаточно, чтобы условия 1—4 выполнялись на некотором промежутке $[a';+\infty) \subset [a;+\infty)$.

Пример. Исследовать на равномерную сходимость интеграл

$$\int_{0}^{+\infty} e^{-xy} \frac{\sin x}{x} dx$$

по параметру y при $y \in [0;+\infty)$.

Решение.

Пусть
$$f(x; y) = \sin x$$
, $g(x; y) = \frac{e^{-xy}}{x}$.

Функция $\sin x$ имеет ограниченную первообразную $F(x) = -\cos x$.

При $x \ge 1$, $y \ge 0$ для функции $g(x;y) = \frac{e^{-xy}}{x}$ выполнены следующие неравенства:

$$\frac{\partial}{\partial x} \left(\frac{e^{-xy}}{x} \right) = -\frac{e^{-xy}}{x^2} (1 + xy) < 0,$$

$$\frac{e^{-xy}}{x} < \frac{1}{x} = \psi(x), \lim_{x \to +\infty} \frac{1}{x} = 0.$$

Значит, согласно признаку Дирихле, данный интеграл сходится равномерно по параметру y на множестве $Y = [0; +\infty)$.

Вопросы для самоконтроля

- 1. Дайте определение несобственного интеграла, зависящего от параметра.
- 2. Дайте определение а) поточечной сходимости, б) равномерной сходимости несобственного интеграла, зависящего от параметра.
- 3. Сформулируйте и докажите критерий Коши равномерной сходимости несобственного интеграла, зависящего от параметра.
- 4. Сформулируйте и докажите признак Вейерштрасса равномерной сходимости несобственного интеграла, зависящего от параметра.
- 5. Сформулируйте и докажите признак Дирихле равномерной сходимости несобственного интеграла, зависящего от параметра.