Лекция 11. п-КРАТНЫЕ ИНТЕГРАЛЫ

- 1. Определение кратного интеграла Римана.
- 2. Классы интегрируемых функций.
- 3. Сведение n-кратных интегралов к повторным.
- 4. Формула замены переменной в кратном интеграле.

1. Определение и свойства кратного интеграла Римана..

Пусть множество G измеримо по Жордану в n-мерном пространстве $\mathbf{\textit{R}}^{n}$

Пусть функция f(x), $x=(x_1;x_2;...;x_n)$ определена на измеримом по Жордану множестве G, а τ есть разбиение множества G: $\tau=\{G_i\},\ i=1,2,...,m$. Возьмем в каждом из множеств G_i по точке $C_i(\xi_1;\xi_2;...;\xi_n),\ i=1,2,...,m$.

Определение 1. Выражение

$$\sigma_m(\tau, C_i) = \sum_{i=1}^n f(\xi_i) \cdot m(G_i)$$
 (1)

называется *интегральной суммой Римана* для функции f(x) на множестве G, соответствующей разбиению τ и выборке точек $C_i \in G_i$, $C_i(\xi_1; \xi_2; ...; \xi_n)$, i=1,2,...,m. Здесь $m(G_i)$ — мера множества G_i .

Если функция f(x), ограничена на G , то для любого разбиения $\tau = \{G_i\}$, i=1,2,...,n , определены числа

$$m_i = \inf_{x \in G_i} f(x), M_i = \sup_{x \in G_i} f(x).$$

Числа $s_{\tau} = \sum_{i=1}^m m_i \cdot m(G_i)$ и $S_{\tau} = \sum_{i=1}^m M_i \cdot m(G_i)$ называются **ниж**-

ней и *верхней суммами Дарбу*, соответствующими разбиению τ .

Определение 2. Число I называется пределом интегральной суммы σ_m при мелкости разбиения $\lambda(\tau) \to 0$, если для любого $\varepsilon > 0$ найдется $\delta > 0$ такое, что для любого разбиения τ с мелкостью $\lambda(\tau) < \delta$ и для любой выборки точек $C_i(\xi_1; \xi_2; ...; \xi_n)$, i = 1, 2, ..., m, выполняется неравенство:

$$|I-\delta_m|<\varepsilon$$
.

Обозначается: $I = \lim_{\lambda \to 0} \sum_{i=1}^m f(\xi_i) \cdot m(G_i)$.

Число I называется n -кратным интегралом Римана от функции f(x) по множеству G , функция f(x) - интегрируемой на множестве G .

Обозначается:
$$\iint_G ... \int f(x_1; x_2; ...; x_n) dx_1 dx_2 ... dx_n$$
.

В случае n=2 получаем двойной интеграл, в случае n=3 – тройной.

Определение 3. Функция f(x) называется существенно неограниченной на измеримом по Жордану множестве $G \in \mathbb{R}^n$, если она неограничена на любом подмножестве $G' \subset G$, таком, что $m(G \setminus G') = 0$.

Теорема 1 (критерий интегрируемости). Для того чтобы ограниченная функция f(x) была интегрируема на измеримом по Жордану множестве $G \in \mathbf{R}^n$, необходимо и достаточно, чтобы для любого $\varepsilon > 0$ нашлось $\delta > 0$ такое, что для любого разбиения τ с мелкостью $\lambda(\tau) < \delta$ разность верхней и нижней сумм Дарбу выполняется неравенство:

$$S_{\tau} - s_{\tau} < \varepsilon$$
.

Доказательство теоремы 1 аналогично соответствующему доказательству для определенного интеграла.

2. Классы интегрируемых функций.

Напоминание: Компакт в \mathbb{R}^n – это ограниченное и замкнутое множество. Функция f(x), непрерывная на компакте, равномерно непрерывной на этом компакте (теорема Кантора).

Теорема 2. Непрерывная на измеримом по Жордану компакте функция f(x) интегрируема на этом компакте.

Доказательство теоремы 2 ничем не отличается от соответствующего доказательства теоремы об интегрируемости функции одной переменной, непрерывной на отрезке.

Теорема 3. Пусть функция f(x) ограничена на измеримом компакте $G \in \mathbf{R}^n$ и множество ее точек разрыва имеет жорданову меру нуль. Тогда функция f(x) интегрируема на G.

▶ Пусть E есть множество точек разрыва функции f(x) и m(E)=0. По определению множества жордановой меры нуль для любого $\varepsilon>0$ найдется такое открытое клеточное множество A, что $A \subset E$ и $m(A) < \frac{\varepsilon}{AM}$, где $M = \sup_{x \in S} f(x)$.

На замкнутом ограниченном множестве $G \setminus A$ функция f(x) непрерывна, а поэтому интегрируема (теорема 2).

Для любого $\varepsilon>0$ найдется разбиение $\tau'=\{G_2;G_3;...;G_N\}$ множества $G\setminus A$ такое, что

$$S_{\tau'} - S_{\tau'} = \sum_{k=2}^{N} (M_k - m_k) m(G_k) < \frac{\varepsilon}{2}.$$

Пусть $G_1 = A \cap G$. Тогда множества $\left\{G_1; G_2; G_3; ...; G_N\right\}$ образует разбиение τ множества G , причем

$$m(G_1) \leq m(A) < \frac{\varepsilon}{4M}$$
.

Тогда

$$S_{\tau} - S_{\tau} = (M_1 - m_1)m(G_1) + \sum_{k=2}^{N} (M_k - m_k)m(G_k) < 2M\frac{\varepsilon}{4M} + \frac{\varepsilon}{2} = \varepsilon.$$

Так как ε произвольное положительное число, то в силу теоремы 1 функция f(x) интегрируема на множестве G.

Все перечисленные свойства доказываются так же, как и соответствующие свойства определенного интеграла.

1. Если $f(x) \equiv 1$, $x = (x_1; x_2; ...; x_n)$, то справедливо равенство

$$\iint_{G} \dots \int 1 dx_1 dx_2 \dots dx_n = m(G).$$

2. Если $f(x) \ge 0$ и f(x) – интегрируемая на измеримом по Жордану множестве G функция, то

$$\iint_{G} ... \int f(x_1; x_2; ...; x_n) dx_1 dx_2 ... dx_n \ge 0.$$

3 (линейность). Если α и β — произвольные постоянные числа, функции f(x) и g(x), $x=(x_1;x_2;...;x_n)$, интегрируемы на измеримом по Жордану множестве G, то функция $\alpha \cdot f(x;y;z) + \beta \cdot g(x;y;z)$ тоже интегрируема в G и справедливо равенство

$$\iint_{G} \dots \int (\alpha \cdot f + \beta \cdot g) dx_{1} dx_{2} \dots dx_{n} =$$

$$= \alpha \iint_G ... \int_G f \, dx_1 dx_2 ... dx_n + \beta \iint_G ... \int_G g \, dx_1 dx_2 ... dx_n .$$

4 (монотонность). Если f(x) и g(x), $x = (x_1; x_2; ...; x_n)$, интегрируемые на множестве G и $f(x) \le g(x)$, то

$$\iint_{G} \dots \int f \, dx_1 dx_2 \dots dx_n \le \iint_{G} \dots \int g \, dx_1 dx_2 \dots dx_n .$$

5 (о среднем). Если функция f(x) непрерывна на измеримом связном компакте $G \in \mathbf{R}^n$, то найдется точка $\xi = (\xi_1; \xi_2; ...; \xi_n) \in G$ такая, что

$$\iint_G ... \int f \, dx_1 dx_2 ... dx_n = f(\xi) m(G).$$

6 (аддитивность). Если $\{G_k\}$, k=1,2,...,m, есть разбиение множества G, то функция f(x) интегрируема на множестве G в том и только в том случае, когда она интегрируема на каждом из множеств G_k причем

$$\iint_{G} ... \int f \, dx_1 dx_2 ... dx_n = \sum_{k=1}^{m} \iint_{G_k} ... \int f \, dx_1 dx_2 ... dx_n \, .$$

- 7. Произведение интегрируемых на измеримом множестве G функций есть интегрируемая на множестве G функция,
- **8.** Если функция f(x) интегрируема на измеримом множестве G , то функция |f(x)| также интегрируема и

$$\left| \iint_{G} \dots \int f \, dx_1 dx_2 \dots dx_n \right| = \iint_{G} \dots \int \left| f \right| dx_1 dx_2 \dots dx_n .$$

3. Сведение *n*-кратных интегралов к повторным.

Определение 4. Область $\Omega \in \mathbb{R}^{n+1}$ называется элементарной относительно оси x_{n+1} , если

$$\Omega = \big\{ \! x = \! \big(x_1; x_2; ...; x_n \big) \! \in G \big| \; \varphi_1 \big(x_1; x_2; ...; x_n \big) \! \le x_{n+1} \! \le \! \varphi_2 \big(x_1; x_2; ...; x_n \big) \! \big\},$$
 где G — замкнутая ограниченная область в \mathbf{R}^n и φ_1 и φ_2 — непрерывные на G функции.

Теорема 4. Если $\Omega \in \mathbf{R}^{n+1}$ — область, элементарная относительно оси x_{n+1} а $f(x_1; x_2; ...; x_{n+1})$ — непрерывная функция на Ω , то справедлива следующая формула:

$$\begin{split} & \iint\limits_{\Omega} ... \int\limits_{\Omega} f\left(x_{1}; x_{2}; ...; x_{n+1}\right) dx_{1} dx_{2} ... dx_{n+1} = \\ & = \iint\limits_{G} dx_{1} dx_{2} ... dx_{n} \int\limits_{\varphi_{1}\left(x_{1}; x_{2}; ...; x_{n}\right)} f\left(x_{1}; x_{2}; ...; x_{n+1}\right) dx_{n+1} \;. \end{split}$$

Без доказательства.

4. Формула замены переменной в кратном интеграле.

Пусть G — ограниченная область ${\it I\!\!R}^n$, отображение $F:G \to {\it I\!\!R}^n$ есть взаимно однозначное и непрерывно дифференцируемое отображение.

Аналитически отображение $F: G \to \mathbf{R}^n$ задается с помощью непрерывно дифференцируемых функций:

$$x_1 = \varphi_1(u_1; u_2; ...; u_n),$$
....,

$$x_n = \varphi_n(u_1; u_2; ...; u_n).$$

Теорема 5. Пусть взаимно однозначное отображение $F: G \to \mathbf{R}^n$ удовлетворяет условиям

- а) производные $\frac{\partial \varphi_i}{\partial u_j}$, i,j = 1,2,...,n , ограничены в области G ,
- б) производные $\frac{\partial \varphi_i}{\partial u_j}$, i,j=1,2,...,n, равномерно непрерывны в

G, в) якобиан отображения

$$J = \frac{D(\varphi_1; \varphi_2; \dots; \varphi_m)}{D(u_1; u_2; \dots; u_m)} = \begin{vmatrix} \frac{\partial \varphi_1}{\partial u_1} & \frac{\partial \varphi_1}{\partial u_2} & \dots & \frac{\partial \varphi_1}{\partial u_m} \\ \frac{\partial \varphi_2}{\partial u_1} & \frac{\partial \varphi_2}{\partial u_2} & \dots & \frac{\partial \varphi_2}{\partial u_m} \\ \dots & \dots & \dots & \dots \\ \frac{\partial \varphi_m}{\partial u_1} & \frac{\partial \varphi_m}{\partial u_2} & \dots & \frac{\partial \varphi_m}{\partial u_m} \end{vmatrix} > 0.$$

M пусть области G и $G^{'} = F(G)$ измеримы и функция f(x) непрерывна в замкнутой области $G^{'}$. Тогда справедлива формула замены переменной в кратном интеграле:

$$\iint_{G} ... \int f(x_{1}; x_{2}; ...; x_{n}) dx_{1} dx_{2} ... dx_{n} =$$

$$= \iint_{G} ... \int f(\varphi_{1}(u); \varphi_{2}(u); ...; \varphi_{n}(u)) |J| du_{1} du_{2} ... du_{n},$$

$$e \partial e \ u = (u_{1}; u_{2}; ...; u_{n}).$$
Без доказательства.

Вопросы для самоконтроля

- 1. Дайте определение интегральной суммы Римана.
- 2. Что называется n-кратным интегралом Римана?
- 3. Сформулируйте достаточное условие интегрируемости функций.
 - 4. Перечислите свойства кратного интеграла.
- 5. Сформулируйте теорему о сведение n-кратных интегралов к повторным.
- 6. Сформулируйте теорему о формуле замены переменной в кратном интеграле.