Тема 2 РЯДЫ И ИНТЕГРАЛЫ ФУРЬЕ Лекция 1 ФУНКЦИОНАЛЬНЫЕ ПРОСТРАНСТВА

- 1. Метрические пространства.
- 2. Линейные пространства.
- 3. Гильбертовы пространства.

1. Метрические пространства.

Определение 1. Если для произвольной упорядоченной пары (x; y) элементов x и y множества X определена функция $\rho(x, y)$, удовлетворяющая условиям:

- 1) $\rho(x,y) > 0$, причем $\rho(x,y) = 0$ тогда и только тогда, когда выполняется x = y;
- 2) для любых x и y имеет место равенство $\rho(x,y) = \rho(y,x)$;
- 3) для любых трех элементов x, y и z выполняется неравенство (называемое неравенством треугольника)

$$\rho(x,z) \le \rho(x,y) + \rho(y,z),$$

то множество X называется метрическим пространством.

Функция $\rho(x,y)$ называется *расстоянием* или *метрикой*. Элементы метрического пространства называются *точками*.

Метрические пространства, элементами которых являются функции, называются функциональными метрическими пространствами.

Пространство B(X) — ограниченных на множестве X функций. Множество B(X) всех действительных ограниченных на некотором множестве X функций образует метрическое пространство с расстоянием

$$\rho(f;g) = \sup_{x \in X} |f(x) - g(x)|, \qquad (1)$$

где f(x), $g(x) \in B(X)$.

Действительно, выполнение в этом случае условий 1) и 2) для расстояния (1) очевидно. Докажем, что расстояние (1) удовлетворяет и третьему условию определения 1.

Для любых трех функций f , g и h . принадлежащих множеству B(X) , и любого $x \in X$ выполняется неравенство

$$|f(x)-h(x)| = |[f(x)-g(x)]+[g(x)-h(x)]| \le \le |f(x)-g(x)|+|g(x)-h(x)| \le \sup_{x\in X} |f(x)-g(x)| + \sup_{x\in X} |g(x)-h(x)|.$$

Перейдя в левой части этого неравенства к верхней грани, получим

$$\sup_{x \in X} |f(x) - h(x)| \le \sup_{x \in X} |f(x) - g(x)| + \sup_{x \in X} |g(x) - h(x)|.$$

Согласно условию 3) определения 1 неравенство треугольника выполняется.

В случае X = [a;b] множество ограниченных на отрезке [a;b] функций обозначается B([a;b]) или $B_{[a;b]}$.

Пространство $CL_{[a;b]}$ — непрерывных на отрезке [a;b] функций. Множество $CL_{[a;b]}$ всех непрерывных на отрезке [a;b] функций является метрическим пространством с расстоянием

$$\rho(f;g) = \int_{a}^{b} |f(x) - g(x)| dx, \qquad (2)$$

где f(x), $g(x) \in CL_{[a;b]}$.

▶ 1) Очевидно, $\rho(f,g) > 0$.

Если
$$\rho(f,g) = 0$$
, то $\rho(f;g) = \int_a^b |f(x) - g(x)| dx = 0$.

Поскольку |f(x)-g(x)| является неотрицательной непрерывной функцией, то для всех $x\in [a;b]$, в силу свойств определенного интеграла выполняется равенство

$$|f(x)-g(x)|=0.$$

Это означает, что $\forall x \in [a;b]$ имеет место равенство f(x) = g(x).

Условие 2) очевидно.

3) Если функции f(x), g(x), $h(x) \in CL_{[a;b]}$, то, интегрируя по отрезку [a;b] неравенство

$$|f(x)-h(x)| \le |f(x)-g(x)|+|g(x)-h(x)|,$$

получим

$$\int_{a}^{b} |f(x) - h(x)| dx \le \int_{a}^{b} |f(x) - g(x)| dx + \int_{a}^{b} |g(x) - h(x)| dx.$$

Следовательно, $\rho(f,h) \leq \rho(f,g) + \rho(g,h)$.

Всякое подмножество метрического пространства является также метрическим пространством с тем же самым расстоянием и называется *подпространством* исходного пространства.

Если X и Y - метрические пространства и отображение $f: X \to Y$ является биекцией. т.е. взаимно однозначно отображает множество X на множество Y и сохраняет расстояние (для любых точек $x \in X$ и $y = f(x) \in Y$ выполняется равенство $\rho(f(x_1); f(x_2)) = \rho(x_1; x_2)$), то отображение f называется изометрией, или изометрическим отображением X на Y, а метрические пространства X и Y – изометрическими.

Определение 2. Последовательность $(x_n)_{n=1}^{\infty}$ точек метрического пространства называется *сходящейся* к точке x этого пространства, если $\lim_{n\to\infty} \rho(x_n;x) = 0$.

Обозначается: $\lim_{n\to\infty} x_n = x$

Примеры. **1.** Рассмотрим сходимость последовательности функций в пространстве B(X).

Если $f_n(x) \in B(X)$ и $f(x) \in B(X)$ и в смысле метрики пространства B(X) имеет место $\lim_{n \to \infty} f_n = f$, то определению расстояния в B(X) имеем $\limsup_{n \to \infty} |f_n(x) - f(x)| = 0$. Это есть не что иное, как определение равномерной сходимости.

Таким образом, сходимость в пространстве B(X) означает равномерную сходимость.

2. Рассмотрим сходимость в пространстве $CL_{[a:b]}$.

Последовательность функций $f_n \in CL_{[a;b]}$ сходится к функции $f(x) \in CL_{[a;b]}$ в пространстве $CL_{[a;b]}$, если

$$\lim_{n\to\infty}\int_{a}^{b} |f_n(x)-f(x)| dx = 0.$$

Определение 3. Последовательность $(x_n)_{n=1}^{\infty}$ точек метрического пространства называется фундаментальной, или последовательностью Коши, если для любого $\varepsilon > 0$ существует такой номер $N(\varepsilon)$, что для всех номеров $n > N(\varepsilon)$ и $m > N(\varepsilon)$ выполняется неравенство $\rho(x_n; x_m) < \varepsilon$.

Лемма 1. Если последовательность точек метрического пространства сходится, то она является фундаментальной последовательностью.

Без доказательства.

Определение 4. Метрическое пространство называется *полным*, если всякая его фундаментальная последовательность сходится.

Пример. Пространство B(X) является полным функциональным пространством. Действительно, сходимость в пространстве B(X) означает равномерную сходимость. Отсюда, согласно критерию Коши равномерной сходимости следует, что всякая фундаментальная в пространстве B(X) последовательность равномерно сходится. Поскольку предел равномерно сходящейся последовательности ограниченных функций также является ограниченной функцией, то этот предел принадлежит пространству B(X). Это означает полноту пространства B(X).

Пусть множество X представляет собой компакт пространства \mathbf{R}^n . Пусть пространство $\mathbf{C}(X)$ всех непрерывных на X функций. Если $f(x) \in \mathbf{C}(X)$, то функция ограничена. Следовательно, $\mathbf{C}(X) \subset B(X)$. Множество $\mathbf{C}(X)$ является подмножеством B(X), поэтому оно метрическое пространство. При этом предел равномерно сходящейся последовательности непрерывных функций является непрерывной функцией, то пространство

C(X) является полным подпространством полного пространства B(X).

2. Линейные пространства.

Определение 5. Множество X называется линейным пространством, если для его элементов определены операции сложения элементов и умножения элементов на число, удовлетворяющие следующим аксиомам:

1)
$$x + y = y + x \quad \forall x, y \in X$$
,

2)
$$x + (y + z) = (x + y) + z \quad \forall x, y, z \in X$$
,

3)
$$\exists 0 \in X : \forall x \in X \quad x + 0 = 0 + x = x$$
,

4)
$$\forall x \in X \ \exists (-x) \in X : x + (-x) = -x + x = 0$$
,

5)
$$\forall x \in X \ \forall \lambda, \mu \in \mathbf{R} \ \lambda(\mu x) = (\lambda \mu)x$$

6)
$$(\lambda + \mu)x = \lambda x + \mu x \quad \forall \ x \in X, \ \forall \ \lambda, \ \mu \in \mathbf{R}$$

7)
$$\lambda(x+y) = \lambda x + \lambda y \quad \forall x, y \in X, \forall \lambda \in \mathbf{R}$$

Из аналитической геометрии известно, конечная система x_1 , x_2 , ..., x_n элементов линейного пространства называется **линейно независимой**, если их линейная комбинация

$$\lambda_1 x_1 + \lambda_2 x_2 + ... + \lambda_n x_n$$

обращается в нуль только тогда, когда все ее коэффициенты равны нулю.

Определение 6. Если X — линейное пространство, а $E \subset X$, то множество всевозможных конечных линейных комбинаций элементов множества E называется линейной оболочкой пространства X.

Обозначается: L(E).

Определение 7. Линейное пространство X называется *нормированным*, если на нем задана такая действительная функция $\|x\|$, называемая *нормой*, что

- $1) ||x|| \ge 0 \quad \forall \ x \in X$
- 2) (однородность) $\|\lambda x\| = |\lambda| \cdot \|x\| \quad \forall x \in X \quad \forall \lambda$
- 3) (неравенство треугольника) $||x + y|| \le ||x|| + ||y|| \quad \forall x, y \in X$,

4) если
$$||x|| = 0$$
, то $x = 0$.

Если в качестве чисел берутся комплексные числа, то линейное нормированное пространство называется *комплексным*, а если только действительные, то — *действительным*.

Если для функции $\|x\|$ выполняются условия 1), 2) 3), то эта функция называется *полунормой*, а линейное пространство X — *полунормированным*.

Очевидно, что норма пространства является и полунормой. Норма (полунорма) $\|x\|$ пространства X обозначается также $\|\cdot\|_X$.

Функция, определенная на некотором множестве функций, называется *функционалом*.

Примеры. 1. В линейном метрическом пространстве B(X) действительных ограниченных функций, определенных па некотором множестве X, функционал

$$||f(x)|| = \sup_{x \in X} |f(x)|, \quad f \in B(X)$$

является нормой.

2. В линейном пространстве абсолютно интегрируемых на интервале (a;b), конечном или бесконечном, функций f функционал

$$||f(x)|| = \int_a^b |f(x)| dx$$

является полунормой. Это полунормированное пространство обозначается $RL_{(a;b)}$.

3. В линейном пространстве $\mathit{CL}_{(a;b)}$ непрерывных на интервале (a;b) функций f , принадлежащих пространству $\mathit{RL}_{(a;b)}$, функционал

$$||f(x)|| = \int_{a}^{b} |f(x)| dx$$

является нормой.

4. Пусть X — компакт в \mathbf{R}^n . Обозначим через C(X) линейное пространство непрерывных на X функций. В этом пространстве функционал

$$||f(x)|| = \max_{x \in X} |f(x)|$$

является нормой.

Лемма 2. Если X — нормированное пространство, то функция $\rho(x;y) = ||x-y||$ является метрикой в X.

Без доказательства.

Итак, всякое нормированное пространство является и метрическим пространством с метрикой $\rho(x;y) = ||x-y||$.

Определение 8. Полное нормированное пространство называется *банаховым* пространством.

Полнота понимается здесь в смысле метрики, порожденной нормой пространства.

3. Гильбертовы пространства.

Будем рассматривать только действительные линейные пространства.

Определение 9. Пусть X — линейное пространство. Числовая функция, обозначаемая

$$(x,y), x, y \in X,$$

заданная на множестве упорядоченных пар точек пространства X, называется *скалярным произведением*, если $\forall x, y \in X$ и $\forall \lambda, \mu \in R$ выполняются следующие условия:

- 1) коммутативность: (x, y) = (y, x);
- 2) линейность: $(\lambda x + \mu y, z) = \lambda(x, z) + \mu(y, z)$;
- 3) $(x,x) \ge 0$;
- 4) если (x,x)=0, то x=0...

Функция (x, y), удовлетворяющая условиям 1), 2) и 3), называется **почти скалярным произведением**.

Очевидно, что скалярное произведение является и почти скалярным.

Свойства скалярного произведения

1. Если (x,y) — почти скалярное произведение в линейном пространстве X, то $\forall x, y \in X$ выполняется неравенство Коши - Буняковского:

$$|(x,y)| \le \sqrt{(x,x)} \cdot \sqrt{(y,y)}$$
.

2. Для любых точек x, $y \in X$ имеет место неравенство треугольника

$$\sqrt{(x+y,x+y)} \le \sqrt{(x,x)} + \sqrt{(y,y)}$$
.

3. Если (x,y) - почти скалярное (в частности, скалярное) произведение в линейном пространстве X, то функция

$$||x|| = \sqrt{(x,x)}$$

является полунормой (соответственно нормой) в этом пространстве, и неравенство Коши - Буняковского можно записать в виде

$$|(x,y)| \leq ||x|| \cdot ||y||.$$

Примеры. **1.** Множество действительных чисел R является пространством со скалярным произведением, если под скалярным произведением (x,y) чисел x и y понимать их обычное произведение: $(x,y)=x\cdot y$.

2. В арифметическом действительном линейном n-мерном пространстве \mathbb{R}^n функция

$$(x,y) = \sum_{i=1}^{n} x_i y_i ,$$

где $x=(x_1,x_2,...,x_n),\ y=(y_1,y_2,...,y_n)\in {\it I\!\!R}^n$, является скалярным произведением.

3. Обозначим через $RL_{2(a;b)}$ множество функций f, заданных на некотором конечном или бесконечном интервале (a;b), для каждой из которых существует правильное разбиение этого интервала и интеграл $\int_{a}^{b} f^{2}(x)dx$ сходится.

Множество $RL_{2(a;b)}$ является линейным пространством. Функционал

$$(f,g) = \int_a^b f(x)g(x)dx, \ f,g \in RL_{2(a;b)},$$

является почти скалярным произведением,

$$||f|| = \sqrt{(f,f)}, f \in RL_{2(a;b)}$$

полунормой пространства $\mathit{RL}_{2(a;b)}$.

4. На подпространстве $CL_{2(a;b)} \subset RL_{2(a;b)}$, состоящем из непрерывных на интервале (a;b) функций f, для которых сходит-

ся интеграл $\int_a^b f^2(x)dx$, функционал

$$(f,g) = \int_{a}^{b} f(x)g(x)dx, f,g \in CL_{2(a;b)}$$

является уже скалярным произведением, а

$$||f|| = \sqrt{(f,f)}, f \in CL_{2(a;b)},$$

нормой.

Определение 10. Полное линейное пространство со скалярным произведением называется *гильбертовым пространством*.

Вопросы для самоконтроля

- 1. Сформулируйте определение метрического пространства. Приведите примеры метрических пространств.
 - 2. Какое метрическое пространство называется полным?
 - 3. Дайте определение линейного пространства.
 - 4. Какое линейное пространство называется нормированным?
- 5. Что называется скалярным произведением для элементов линейного пространства?
 - 6. Какими свойствами оно обладает?
- 7. Какое пространство называется гильбертовым пространством?